IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v9y1990i2p129-132.html
   My bibliography  Save this article

The performance of kernel density functions in kernel distribution function estimation

Author

Listed:
  • Jones, M. C.

Abstract

We note that the uniform is the optimal kernel density for kernel estimation of the distribution function, or its inverse, and that several other popular kernel densities perform virtually as well. Parallels with the kernel density estimation case are made.

Suggested Citation

  • Jones, M. C., 1990. "The performance of kernel density functions in kernel distribution function estimation," Statistics & Probability Letters, Elsevier, vol. 9(2), pages 129-132, February.
  • Handle: RePEc:eee:stapro:v:9:y:1990:i:2:p:129-132
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0167-7152(92)90006-Q
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minglu Ma & Qiang Wang, 2022. "Assessment and Forecast of Green Total Factor Energy Efficiency in the Yellow River Basin—A Perspective Distinguishing the Upper, Middle and Lower Stream," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    2. Shingo Shirahata & In-Sun Chu, 1992. "Integrated squared error of kernel-type estimator of distribution function," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 44(3), pages 579-591, September.
    3. Jungmin An & Dong-Kwan Kim & Jinyeong Lee & Sung-Kwan Joo, 2021. "Least Squares Monte Carlo Simulation-Based Decision-Making Method for Photovoltaic Investment in Korea," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    4. Alexandre Leblanc, 2012. "On estimating distribution functions using Bernstein polynomials," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 919-943, October.
    5. Tenreiro, Carlos, 2003. "On the asymptotic normality of multistage integrated density derivatives kernel estimators," Statistics & Probability Letters, Elsevier, vol. 64(3), pages 311-322, September.
    6. Bouzebda, Salim & Slaoui, Yousri, 2022. "Nonparametric recursive method for moment generating function kernel-type estimators," Statistics & Probability Letters, Elsevier, vol. 184(C).
    7. Weining Shen & Jing Ning & Ying Yuan & Anna S. Lok & Ziding Feng, 2018. "Model†free scoring system for risk prediction with application to hepatocellular carcinoma study," Biometrics, The International Biometric Society, vol. 74(1), pages 239-248, March.
    8. Neil Shephard & Thomas Flury, 2009. "Learning and filtering via simulation: smoothly jittered particle filters," Economics Series Working Papers 469, University of Oxford, Department of Economics.
    9. Funke, Benedikt & Palmes, Christian, 2017. "A note on estimating cumulative distribution functions by the use of convolution power kernels," Statistics & Probability Letters, Elsevier, vol. 121(C), pages 90-98.
    10. D. Blanke & D. Bosq, 2018. "Polygonal smoothing of the empirical distribution function," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 263-287, July.
    11. Chacón, José E. & Monfort, Pablo & Tenreiro, Carlos, 2014. "Fourier methods for smooth distribution function estimation," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 223-230.
    12. Y. K. Tseng & Y. R. Su & M. Mao & J. L. Wang, 2015. "An extended hazard model with longitudinal covariates," Biometrika, Biometrika Trust, vol. 102(1), pages 135-150.
    13. Hussein Khraibani & Bilal Nehme & Olivier Strauss, 2018. "Interval Estimation of Value-at-Risk Based on Nonparametric Models," Econometrics, MDPI, vol. 6(4), pages 1-30, December.
    14. Daniel Janas, 1993. "A smoothed bootstrap estimator for a studentized sample quantile," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(2), pages 317-329, June.
    15. Wenbin Lu & Lexin Li, 2011. "Sufficient Dimension Reduction for Censored Regressions," Biometrics, The International Biometric Society, vol. 67(2), pages 513-523, June.
    16. Nora Saadi & Smail Adjabi & Ali Gannoun, 2018. "The selection of the number of terms in an orthogonal series cumulative function estimator," Statistical Papers, Springer, vol. 59(1), pages 127-152, March.
    17. Séguin, Sara & Fleten, Stein-Erik & Côté, Pascal & Pichler, Alois & Audet, Charles, 2017. "Stochastic short-term hydropower planning with inflow scenario trees," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1156-1168.
    18. Suhyun Kang & Wenbin Lu & Mengling Liu, 2017. "Efficient estimation for accelerated failure time model under case-cohort and nested case-control sampling," Biometrics, The International Biometric Society, vol. 73(1), pages 114-123, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:9:y:1990:i:2:p:129-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.