IDEAS home Printed from https://ideas.repec.org/a/spr/sankha/v83y2021i1d10.1007_s13171-019-00182-3.html
   My bibliography  Save this article

Data-driven Deconvolution Recursive Kernel Density Estimators Defined by Stochastic Approximation Method

Author

Listed:
  • Yousri Slaoui

    (Université de Poitiers)

Abstract

In this paper we show how one can implement in practice the bandwidth selection in deconvolution recursive kernel estimators of a probability density function defined by the stochastic approximation algorithm. We consider the so called super smooth case where the characteristic function of the known distribution decreases exponentially. We show that, using the proposed bandwidth selection and some special stepsizes, the proposed recursive estimator will be very competitive to the nonrecursive one in terms of estimation error and much better in terms of computational costs. We corroborate these theoretical results through simulations and a real dataset.

Suggested Citation

  • Yousri Slaoui, 2021. "Data-driven Deconvolution Recursive Kernel Density Estimators Defined by Stochastic Approximation Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 312-352, February.
  • Handle: RePEc:spr:sankha:v:83:y:2021:i:1:d:10.1007_s13171-019-00182-3
    DOI: 10.1007/s13171-019-00182-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13171-019-00182-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13171-019-00182-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Masry, E., 1993. "Asymptotic Normality for Deconvolution Estimators of Multivariate Densities of Stationary Processes," Journal of Multivariate Analysis, Elsevier, vol. 44(1), pages 47-68, January.
    2. Masry, Elias, 1993. "Strong consistency and rates for deconvolution of multivariate densities of stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 47(1), pages 53-74, August.
    3. Shunpu Zhang & Rohana Karunamuni, 2000. "Boundary Bias Correction for Nonparametric Deconvolution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(4), pages 612-629, December.
    4. A. Delaigle & I. Gijbels, 2004. "Bootstrap bandwidth selection in kernel density estimation from a contaminated sample," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(1), pages 19-47, March.
    5. Delaigle, A. & Gijbels, I., 2004. "Practical bandwidth selection in deconvolution kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 249-267, March.
    6. Hall, Peter & Marron, J. S., 1987. "Estimation of integrated squared density derivatives," Statistics & Probability Letters, Elsevier, vol. 6(2), pages 109-115, November.
    7. Yousri Slaoui, 2015. "Plug-in bandwidth selector for recursive kernel regression estimators defined by stochastic approximation method," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(4), pages 483-509, November.
    8. Bert Van Es & Hae‐Won Uh, 2005. "Asymptotic Normality of Kernel‐Type Deconvolution Estimators," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(3), pages 467-483, September.
    9. Staudenmayer, John & Ruppert, David & Buonaccorsi, John P., 2008. "Density Estimation in the Presence of Heteroscedastic Measurement Error," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 726-736, June.
    10. A. Delaigle & I. Gijbels, 2002. "Estimation of integrated squared density derivatives from a contaminated sample," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 869-886, October.
    11. Wand, M. P., 1998. "Finite sample performance of deconvolving density estimators," Statistics & Probability Letters, Elsevier, vol. 37(2), pages 131-139, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guillermo Basulto-Elias & Alicia L. Carriquiry & Kris Brabanter & Daniel J. Nordman, 2021. "Bivariate Kernel Deconvolution with Panel Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 122-151, May.
    2. William Horrace & Christopher Parmeter, 2011. "Semiparametric deconvolution with unknown error variance," Journal of Productivity Analysis, Springer, vol. 35(2), pages 129-141, April.
    3. Delaigle, A. & Gijbels, I., 2006. "Data-driven boundary estimation in deconvolution problems," Computational Statistics & Data Analysis, Elsevier, vol. 50(8), pages 1965-1994, April.
    4. Ali Al-Sharadqah & Majid Mojirsheibani & William Pouliot, 2020. "On the performance of weighted bootstrapped kernel deconvolution density estimators," Statistical Papers, Springer, vol. 61(4), pages 1773-1798, August.
    5. Yang Zu, 2015. "A Note on the Asymptotic Normality of the Kernel Deconvolution Density Estimator with Logarithmic Chi-Square Noise," Econometrics, MDPI, vol. 3(3), pages 1-16, July.
    6. Peter Hall & Tapabrata Maiti, 2008. "Non‐parametric inference for clustered binary and count data when only summary information is available," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 725-738, September.
    7. Hao Dong & Taisuke Otsu & Luke Taylor, 2023. "Bandwidth selection for nonparametric regression with errors-in-variables," Econometric Reviews, Taylor & Francis Journals, vol. 42(4), pages 393-419, April.
    8. Otsu, Taisuke & Taylor, Luke, 2021. "Specification Testing For Errors-In-Variables Models," Econometric Theory, Cambridge University Press, vol. 37(4), pages 747-768, August.
    9. Mynbaev, Kairat & Martins-Filho, Carlos, 2015. "Consistency and asymptotic normality for a nonparametric prediction under measurement errors," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 166-188.
    10. Bissantz, Nicolai & Dümbgen, Lutz & Holzmann, Hajo & Munk, Axel, 2007. "Nonparametric confidence bands in deconvolution density estimation," Technical Reports 2007,03, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    11. Martin L. Hazelton & Berwin A. Turlach, 2010. "Semiparametric Density Deconvolution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 91-108, March.
    12. Delaigle, Aurore & Hall, Peter, 2006. "On optimal kernel choice for deconvolution," Statistics & Probability Letters, Elsevier, vol. 76(15), pages 1594-1602, September.
    13. Zu, Yang, 2015. "Nonparametric specification tests for stochastic volatility models based on volatility density," Journal of Econometrics, Elsevier, vol. 187(1), pages 323-344.
    14. Adriano Z. Zambom & Ronaldo Dias, 2013. "A Review of Kernel Density Estimation with Applications to Econometrics," International Econometric Review (IER), Econometric Research Association, vol. 5(1), pages 20-42, April.
    15. Jun Cai & William C. Horrace & Christopher F. Parmeter, 2021. "Density deconvolution with Laplace errors and unknown variance," Journal of Productivity Analysis, Springer, vol. 56(2), pages 103-113, December.
    16. Parmeter, Christopher F., 2008. "The effect of measurement error on the estimated shape of the world distribution of income," Economics Letters, Elsevier, vol. 100(3), pages 373-376, September.
    17. DongHyuk Lee & Soumendra N. Lahiri & Samiran Sinha, 2020. "A test of homogeneity of distributions when observations are subject to measurement errors," Biometrics, The International Biometric Society, vol. 76(3), pages 821-833, September.
    18. Kato, Kengo & Sasaki, Yuya, 2018. "Uniform confidence bands in deconvolution with unknown error distribution," Journal of Econometrics, Elsevier, vol. 207(1), pages 129-161.
    19. Holzmann, Hajo & Bissantz, Nicolai & Munk, Axel, 2007. "Density testing in a contaminated sample," Journal of Multivariate Analysis, Elsevier, vol. 98(1), pages 57-75, January.
    20. Julie McIntyre & Leonard Stefanski, 2011. "Density Estimation with Replicate Heteroscedastic Measurements," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 81-99, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankha:v:83:y:2021:i:1:d:10.1007_s13171-019-00182-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.