IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v134y2018icp134-140.html
   My bibliography  Save this article

A general construction for nested Latin hypercube designs

Author

Listed:
  • Xu, Jin
  • Duan, Xiaojun
  • Wang, Zhengming
  • Yan, Liang

Abstract

We propose a new construction for nested designs, called General Nested Latin Hypercube designs (GNLHs). Such designs contain nested Latin hypercube designs as special cases. Besides achieving maximum uniformity in one dimension, each layer of GNLHs is flexible in run sizes. Moreover, theoretical results and numerical simulations show that GNLHs perform well on the sampling variance.

Suggested Citation

  • Xu, Jin & Duan, Xiaojun & Wang, Zhengming & Yan, Liang, 2018. "A general construction for nested Latin hypercube designs," Statistics & Probability Letters, Elsevier, vol. 134(C), pages 134-140.
  • Handle: RePEc:eee:stapro:v:134:y:2018:i:c:p:134-140
    DOI: 10.1016/j.spl.2017.10.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715217303449
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2017.10.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marc C. Kennedy & Anthony O'Hagan, 2001. "Bayesian calibration of computer models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 425-464.
    2. Jin Xu & Jiajie Chen & Peter Z. G. Qian, 2015. "Sequentially Refined Latin Hypercube Designs: Reusing Every Point," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1696-1706, December.
    3. Xu He & Peter Z. G. Qian, 2011. "Nested orthogonal array-based Latin hypercube designs," Biometrika, Biometrika Trust, vol. 98(3), pages 721-731.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weiyan Mu & Chengxin Liu & Shifeng Xiong, 2023. "Nested Maximum Entropy Designs for Computer Experiments," Mathematics, MDPI, vol. 11(16), pages 1-12, August.
    2. Hao Chen & Yan Zhang & Xue Yang, 2021. "Uniform projection nested Latin hypercube designs," Statistical Papers, Springer, vol. 62(4), pages 2031-2045, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vanslette, Kevin & Tohme, Tony & Youcef-Toumi, Kamal, 2020. "A general model validation and testing tool," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    2. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    3. McDonald, Cory P. & Urban, Noel R., 2010. "Using a model selection criterion to identify appropriate complexity in aquatic biogeochemical models," Ecological Modelling, Elsevier, vol. 221(3), pages 428-432.
    4. Jakub Bijak & Jason D. Hilton & Eric Silverman & Viet Dung Cao, 2013. "Reforging the Wedding Ring," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(27), pages 729-766.
    5. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    6. Hao Wu & Michael Browne, 2015. "Random Model Discrepancy: Interpretations and Technicalities (A Rejoinder)," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 619-624, September.
    7. Gholami, M. & Torreggiani, D. & Tassinari, P. & Barbaresi, A., 2021. "Narrowing uncertainties in forecasting urban building energy demand through an optimal archetyping method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    8. Theresa Reiker & Monica Golumbeanu & Andrew Shattock & Lydia Burgert & Thomas A. Smith & Sarah Filippi & Ewan Cameron & Melissa A. Penny, 2021. "Emulator-based Bayesian optimization for efficient multi-objective calibration of an individual-based model of malaria," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    9. Li, Luyi & Lu, Zhenzhou, 2018. "A new method for model validation with multivariate output," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 579-592.
    10. Jakub Bijak & Eric Silverman, 2013. "Probability and Social Science. Methodological Relationships between the Two Approaches," Population Studies, Taylor & Francis Journals, vol. 67(1), pages 127-129, March.
    11. Shi, Lei & Lin, Shih-Po, 2016. "A new RBDO method using adaptive response surface and first-order score function for crashworthiness design," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 125-133.
    12. Villez, Kris & Del Giudice, Dario & Neumann, Marc B. & Rieckermann, Jörg, 2020. "Accounting for erroneous model structures in biokinetic process models," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    13. Xiaoyu Xiong & Benjamin D. Youngman & Theodoros Economou, 2021. "Data fusion with Gaussian processes for estimation of environmental hazard events," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    14. Evan Baker & Peter Challenor & Matt Eames, 2021. "Future proofing a building design using history matching inspired level‐set techniques," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 335-350, March.
    15. Petropoulos, G. & Wooster, M.J. & Carlson, T.N. & Kennedy, M.C. & Scholze, M., 2009. "A global Bayesian sensitivity analysis of the 1d SimSphere soil–vegetation–atmospheric transfer (SVAT) model using Gaussian model emulation," Ecological Modelling, Elsevier, vol. 220(19), pages 2427-2440.
    16. A. E. Ades & A. J. Sutton, 2006. "Multiparameter evidence synthesis in epidemiology and medical decision‐making: current approaches," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(1), pages 5-35, January.
    17. David Breitenmoser & Francesco Cerutti & Gernot Butterweck & Malgorzata Magdalena Kasprzak & Sabine Mayer, 2023. "Emulator-based Bayesian inference on non-proportional scintillation models by compton-edge probing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Chen, Jianli & Gao, Xinghua & Hu, Yuqing & Zeng, Zhaoyun & Liu, Yanan, 2019. "A meta-model-based optimization approach for fast and reliable calibration of building energy models," Energy, Elsevier, vol. 188(C).
    19. Kwag, Shinyoung & Gupta, Abhinav & Dinh, Nam, 2018. "Probabilistic risk assessment based model validation method using Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 380-393.
    20. Nagel, Joseph B. & Rieckermann, Jörg & Sudret, Bruno, 2020. "Principal component analysis and sparse polynomial chaos expansions for global sensitivity analysis and model calibration: Application to urban drainage simulation," Reliability Engineering and System Safety, Elsevier, vol. 195(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:134:y:2018:i:c:p:134-140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.