IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v62y2021i4d10.1007_s00362-020-01172-6.html
   My bibliography  Save this article

Uniform projection nested Latin hypercube designs

Author

Listed:
  • Hao Chen

    (Tianjin University of Finance and Economics)

  • Yan Zhang

    (Tianjin University of Finance and Economics Pearl River College)

  • Xue Yang

    (Tianjin University of Finance and Economics)

Abstract

Computer experiments usually involve many factors, but only a few of them are active. In such a case, it is desirable to construct designs with good projection properties. Maximum projection designs and uniform projection designs have been developed for common experimental situations, however, there has been little study on constructing projection designs for high-accuracy computer experiments (HEs) and low-accuracy computer experiments (LEs) so far. In this paper, we propose a weighted uniform projection criterion, and construct uniform projection nested Latin hypercube designs to suit such computer experiment situations. We show that the obtained designs have good projection properties in all sub-dimensions, and we also discuss how to choose a proper value for the weight. Simulated examples are available to illustrate the effectiveness of the proposed designs.

Suggested Citation

  • Hao Chen & Yan Zhang & Xue Yang, 2021. "Uniform projection nested Latin hypercube designs," Statistical Papers, Springer, vol. 62(4), pages 2031-2045, August.
  • Handle: RePEc:spr:stpapr:v:62:y:2021:i:4:d:10.1007_s00362-020-01172-6
    DOI: 10.1007/s00362-020-01172-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-020-01172-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-020-01172-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rennen, G. & Husslage, B.G.M. & van Dam, E.R. & den Hertog, D., 2009. "Nested Maximin Latin Hypercube Designs," Discussion Paper 2009-06, Tilburg University, Center for Economic Research.
    2. van Dam, E.R. & Husslage, B.G.M. & den Hertog, D., 2004. "One-Dimensional Nested Maximin Designs," Other publications TiSEM f2db4179-7b8e-4b7c-a736-7, Tilburg University, School of Economics and Management.
    3. Edwin Dam & Bart Husslage & Dick Hertog, 2010. "One-dimensional nested maximin designs," Journal of Global Optimization, Springer, vol. 46(2), pages 287-306, February.
    4. V. Roshan Joseph & Evren Gul & Shan Ba, 2015. "Maximum projection designs for computer experiments," Biometrika, Biometrika Trust, vol. 102(2), pages 371-380.
    5. Peter Z. G. Qian, 2009. "Nested Latin hypercube designs," Biometrika, Biometrika Trust, vol. 96(4), pages 957-970.
    6. Hao Chen & Min-Qian Liu, 2015. "Nested Latin Hypercube Designs with Sliced Structures," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(22), pages 4721-4733, November.
    7. Xu, Jin & Duan, Xiaojun & Wang, Zhengming & Yan, Liang, 2018. "A general construction for nested Latin hypercube designs," Statistics & Probability Letters, Elsevier, vol. 134(C), pages 134-140.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin Xu & Jiajie Chen & Peter Z. G. Qian, 2015. "Sequentially Refined Latin Hypercube Designs: Reusing Every Point," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1696-1706, December.
    2. Shields, Michael D. & Teferra, Kirubel & Hapij, Adam & Daddazio, Raymond P., 2015. "Refined Stratified Sampling for efficient Monte Carlo based uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 310-325.
    3. Weiyan Mu & Chengxin Liu & Shifeng Xiong, 2023. "Nested Maximum Entropy Designs for Computer Experiments," Mathematics, MDPI, vol. 11(16), pages 1-12, August.
    4. Husslage, B.G.M. & van Dam, E.R. & den Hertog, D., 2005. "Nested Maximin Latin Hypercube Designs in Two Dimensions," Discussion Paper 2005-79, Tilburg University, Center for Economic Research.
    5. Husslage, B.G.M. & van Dam, E.R. & den Hertog, D., 2005. "Nested Maximin Latin Hypercube Designs in Two Dimensions," Other publications TiSEM 3e013144-3e4c-460c-96bc-1, Tilburg University, School of Economics and Management.
    6. Leurent, Martin & Jasserand, Frédéric & Locatelli, Giorgio & Palm, Jenny & Rämä, Miika & Trianni, Andrea, 2017. "Driving forces and obstacles to nuclear cogeneration in Europe: Lessons learnt from Finland," Energy Policy, Elsevier, vol. 107(C), pages 138-150.
    7. Francisco Castillo-Zunino & Pinar Keskinocak, 2021. "Bi-criteria multiple knapsack problem with grouped items," Journal of Heuristics, Springer, vol. 27(5), pages 747-789, October.
    8. Song-Nan Liu & Min-Qian Liu & Jin-Yu Yang, 2023. "Construction of Column-Orthogonal Designs with Two-Dimensional Stratifications," Mathematics, MDPI, vol. 11(6), pages 1-27, March.
    9. Edwin Dam & Bart Husslage & Dick Hertog, 2010. "One-dimensional nested maximin designs," Journal of Global Optimization, Springer, vol. 46(2), pages 287-306, February.
    10. Vikram V. Garg & Roy H. Stogner, 2017. "Hierarchical Latin Hypercube Sampling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 673-682, April.
    11. Sukanta Dash & Baidya Nath Mandal & Rajender Parsad, 2020. "On the construction of nested orthogonal Latin hypercube designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(3), pages 347-353, April.
    12. Xueru Zhang & Dennis K. J. Lin & Lin Wang, 2023. "Digital Triplet: A Sequential Methodology for Digital Twin Learning," Mathematics, MDPI, vol. 11(12), pages 1-16, June.
    13. Chen, Xi & Zhou, Qiang, 2017. "Sequential design strategies for mean response surface metamodeling via stochastic kriging with adaptive exploration and exploitation," European Journal of Operational Research, Elsevier, vol. 262(2), pages 575-585.
    14. Crombecq, K. & Laermans, E. & Dhaene, T., 2011. "Efficient space-filling and non-collapsing sequential design strategies for simulation-based modeling," European Journal of Operational Research, Elsevier, vol. 214(3), pages 683-696, November.
    15. Guo, Hongqiang & Lu, Silong & Hui, Hongzhong & Bao, Chunjiang & Shangguan, Jinyong, 2019. "Receding horizon control-based energy management for plug-in hybrid electric buses using a predictive model of terminal SOC constraint in consideration of stochastic vehicle mass," Energy, Elsevier, vol. 176(C), pages 292-308.
    16. Razmi, Afshin & Rahbar, Morteza & Bemanian, Mohammadreza, 2022. "PCA-ANN integrated NSGA-III framework for dormitory building design optimization: Energy efficiency, daylight, and thermal comfort," Applied Energy, Elsevier, vol. 305(C).
    17. Grishagin, Vladimir & Israfilov, Ruslan & Sergeyev, Yaroslav, 2018. "Convergence conditions and numerical comparison of global optimization methods based on dimensionality reduction schemes," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 270-280.
    18. Chen, Ray-Bing & Hsu, Yen-Wen & Hung, Ying & Wang, Weichung, 2014. "Discrete particle swarm optimization for constructing uniform design on irregular regions," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 282-297.
    19. Tonghui Pang & Yan Wang & Jian-Feng Yang, 2022. "Asymptotically optimal maximin distance Latin hypercube designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(4), pages 405-418, May.
    20. Roy, Pamphile T. & Jofre, Lluís & Jouhaud, Jean-Christophe & Cuenot, Bénédicte, 2020. "Versatile sequential sampling algorithm using Kernel Density Estimation," European Journal of Operational Research, Elsevier, vol. 284(1), pages 201-211.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:62:y:2021:i:4:d:10.1007_s00362-020-01172-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.