Nested Maximum Entropy Designs for Computer Experiments
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yunfei Wei & Shifeng Xiong, 2019. "Bayesian integrative analysis for multi-fidelity computer experiments," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(11), pages 1973-1987, August.
- Rennen, G. & Husslage, B.G.M. & van Dam, E.R. & den Hertog, D., 2009.
"Nested Maximin Latin Hypercube Designs,"
Discussion Paper
2009-06, Tilburg University, Center for Economic Research.
- Rennen, G. & Husslage, B.G.M. & van Dam, E.R. & den Hertog, D., 2010. "Nested maximin Latin hypercube designs," Other publications TiSEM 7f0703e8-06bc-45b4-886c-3, Tilburg University, School of Economics and Management.
- Cox, Dennis D. & Park, Jeong-Soo & Singer, Clifford E., 2001. "A statistical method for tuning a computer code to a data base," Computational Statistics & Data Analysis, Elsevier, vol. 37(1), pages 77-92, July.
- Sukanta Dash & Baidya Nath Mandal & Rajender Parsad, 2020. "On the construction of nested orthogonal Latin hypercube designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(3), pages 347-353, April.
- Bing Guo & Xue-Ping Chen & Min-Qian Liu, 2020. "Construction of Latin hypercube designs with nested and sliced structures," Statistical Papers, Springer, vol. 61(2), pages 727-740, April.
- Mu, Weiyan & Xiong, Shifeng, 2018. "A class of space-filling designs and their projection properties," Statistics & Probability Letters, Elsevier, vol. 141(C), pages 129-134.
- Yaping Wang & Fasheng Sun & Hongquan Xu, 2022. "On Design Orthogonality, Maximin Distance, and Projection Uniformity for Computer Experiments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(537), pages 375-385, January.
- Xu, Jin & Duan, Xiaojun & Wang, Zhengming & Yan, Liang, 2018. "A general construction for nested Latin hypercube designs," Statistics & Probability Letters, Elsevier, vol. 134(C), pages 134-140.
- Weiyan Mu & Qiuyue Wei & Dongli Cui & Shifeng Xiong, 2018. "Best Linear Unbiased Prediction for Multifidelity Computer Experiments," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-7, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bing Guo & Xiao-Rong Li & Min-Qian Liu & Xue Yang, 2023. "Construction of orthogonal general sliced Latin hypercube designs," Statistical Papers, Springer, vol. 64(3), pages 987-1014, June.
- Hao Chen & Yan Zhang & Xue Yang, 2021. "Uniform projection nested Latin hypercube designs," Statistical Papers, Springer, vol. 62(4), pages 2031-2045, August.
- Merlin Keller & Guillaume Damblin & Alberto Pasanisi & Mathieu Schumann & Pierre Barbillon & Fabrizio Ruggeri, 2022. "Validation of a Computer Code for the Energy Consumption of a Building, with Application to Optimal Electric Bill Pricing," Post-Print hal-04071903, HAL.
- Peyman Bahrami & Farzan Sahari Moghaddam & Lesley A. James, 2022. "A Review of Proxy Modeling Highlighting Applications for Reservoir Engineering," Energies, MDPI, vol. 15(14), pages 1-32, July.
- Edwin Dam & Bart Husslage & Dick Hertog, 2010.
"One-dimensional nested maximin designs,"
Journal of Global Optimization, Springer, vol. 46(2), pages 287-306, February.
- van Dam, E.R. & Husslage, B.G.M. & den Hertog, D., 2004. "One-Dimensional Nested Maximin Designs," Discussion Paper 2004-66, Tilburg University, Center for Economic Research.
- van Dam, E.R. & Husslage, B.G.M. & den Hertog, D., 2010. "One-dimensional nested maximin designs," Other publications TiSEM cf47da9c-59f8-4533-a845-8, Tilburg University, School of Economics and Management.
- Merlin Keller & Guillaume Damblin & Alberto Pasanisi & Mathieu Schumann & Pierre Barbillon & Fabrizio Ruggeri & Eric Parent, 2022. "Validation of a Computer Code for the Energy Consumption of a Building, with Application to Optimal Electric Bill Pricing," Econometrics, MDPI, vol. 10(4), pages 1-24, November.
- Jin Xu & Jiajie Chen & Peter Z. G. Qian, 2015. "Sequentially Refined Latin Hypercube Designs: Reusing Every Point," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1696-1706, December.
- Shields, Michael D. & Teferra, Kirubel & Hapij, Adam & Daddazio, Raymond P., 2015. "Refined Stratified Sampling for efficient Monte Carlo based uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 310-325.
- Trucano, T.G. & Swiler, L.P. & Igusa, T. & Oberkampf, W.L. & Pilch, M., 2006. "Calibration, validation, and sensitivity analysis: What's what," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1331-1357.
- Razmi, Afshin & Rahbar, Morteza & Bemanian, Mohammadreza, 2022. "PCA-ANN integrated NSGA-III framework for dormitory building design optimization: Energy efficiency, daylight, and thermal comfort," Applied Energy, Elsevier, vol. 305(C).
- Husslage, B.G.M. & Rennen, G. & van Dam, E.R. & den Hertog, D., 2011. "Space-filling Latin hypercube designs for computer experiments," Other publications TiSEM 694f73df-a373-46a7-aa4d-1, Tilburg University, School of Economics and Management.
- van Dam, E.R., 2008. "Two-dimensional maximin Latin hypercube designs," Other publications TiSEM 61788dd1-b1b5-4c81-9151-8, Tilburg University, School of Economics and Management.
- Chen, Ray-Bing & Hsu, Yen-Wen & Hung, Ying & Wang, Weichung, 2014. "Discrete particle swarm optimization for constructing uniform design on irregular regions," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 282-297.
- Wang, Sumin & Wang, Dongying & Sun, Fasheng, 2019. "A central limit theorem for marginally coupled designs," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 168-174.
- Ray-Bing Chen & Ying-Chao Hung & Weichung Wang & Sung-Wei Yen, 2013. "Contour estimation via two fidelity computer simulators under limited resources," Computational Statistics, Springer, vol. 28(4), pages 1813-1834, August.
- Huaimin Diao & Yan Wang & Dianpeng Wang, 2022. "A D-Optimal Sequential Calibration Design for Computer Models," Mathematics, MDPI, vol. 10(9), pages 1-15, April.
- Wang, Xiaodi & Huang, Hengzhen, 2023. "Group symmetric Latin hypercube designs for symmetrical global sensitivity analysis," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
More about this item
Keywords
DETMAX; maximum entropy designs; kriging; sample-size determination; multi-fidelity computer experiments;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3572-:d:1219611. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.