IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v163y2023icp350-386.html
   My bibliography  Save this article

Parameter estimation of discretely observed interacting particle systems

Author

Listed:
  • Amorino, Chiara
  • Heidari, Akram
  • Pilipauskaitė, Vytautė
  • Podolskij, Mark

Abstract

In this paper, we consider the problem of joint parameter estimation for drift and diffusion coefficients of a stochastic McKean–Vlasov equation and for the associated system of interacting particles. The analysis is provided in a general framework, as both coefficients depend on the solution and on the law of the solution itself. Starting from discrete observations of the interacting particle system over a fixed interval [0,T], we propose a contrast function based on a pseudo likelihood approach. We show that the associated estimator is consistent when the discretization step (Δn) and the number of particles ( N) satisfy Δn→0 and N→∞, and asymptotically normal when additionally the condition ΔnN→0 holds.

Suggested Citation

  • Amorino, Chiara & Heidari, Akram & Pilipauskaitė, Vytautė & Podolskij, Mark, 2023. "Parameter estimation of discretely observed interacting particle systems," Stochastic Processes and their Applications, Elsevier, vol. 163(C), pages 350-386.
  • Handle: RePEc:eee:spapps:v:163:y:2023:i:c:p:350-386
    DOI: 10.1016/j.spa.2023.06.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414923001321
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2023.06.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Julie Lyng Forman & Michael Sørensen, 2008. "The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 438-465, September.
    2. Chiara Amorino & Arnaud Gloter, 2020. "Contrast function estimation for the drift parameter of ergodic jump diffusion process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(2), pages 279-346, June.
    3. Della Maestra, Laetitia & Hoffmann, Marc, 2023. "The LAN property for McKean–Vlasov models in a mean-field regime," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 109-146.
    4. Yasutaka Shimizu, 2006. "M-Estimation for Discretely Observed Ergodic Diffusion Processes with Infinitely Many Jumps," Statistical Inference for Stochastic Processes, Springer, vol. 9(2), pages 179-225, July.
    5. Wen, Jianghui & Wang, Xiangjun & Mao, Shuhua & Xiao, Xinping, 2016. "Maximum likelihood estimation of McKean–Vlasov stochastic differential equation and its application," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 237-246.
    6. Malrieu, F., 2001. "Logarithmic Sobolev inequalities for some nonlinear PDE's," Stochastic Processes and their Applications, Elsevier, vol. 95(1), pages 109-132, September.
    7. Djehiche, Boualem & Gozzi, Fausto & Zanco, Giovanni & Zanella, Margherita, 2022. "Optimal portfolio choice with path dependent benchmarked labor income: A mean field model," Stochastic Processes and their Applications, Elsevier, vol. 145(C), pages 48-85.
    8. Fernandez, Begoña & Méléard, Sylvie, 1997. "A Hilbertian approach for fluctuations on the McKean-Vlasov model," Stochastic Processes and their Applications, Elsevier, vol. 71(1), pages 33-53, October.
    9. Delattre, Maud & Genon-Catalot, Valentine & Larédo, Catherine, 2018. "Parametric inference for discrete observations of diffusion processes with mixed effects," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 1929-1957.
    10. Chiara Amorino & Arnaud Gloter, 2021. "Joint estimation for volatility and drift parameters of ergodic jump diffusion processes via contrast function," Statistical Inference for Stochastic Processes, Springer, vol. 24(1), pages 61-148, April.
    11. Genon-Catalot, Valentine & Larédo, Catherine, 2021. "Probabilistic properties and parametric inference of small variance nonlinear self-stabilizing stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 513-548.
    12. Yoshida, Nakahiro, 1992. "Estimation for diffusion processes from discrete observation," Journal of Multivariate Analysis, Elsevier, vol. 41(2), pages 220-242, May.
    13. Christophe Denis & Charlotte Dion & Miguel Martinez, 2020. "Consistent procedures for multiclass classification of discrete diffusion paths," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(2), pages 516-554, June.
    14. Maud Delattre & Valentine Genon-Catalot & Catherine Larédo, 2018. "Approximate maximum likelihood estimation for stochastic differential equations with random effects in the drift and the diffusion," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(8), pages 953-983, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharrock, Louis & Kantas, Nikolas & Parpas, Panos & Pavliotis, Grigorios A., 2023. "Online parameter estimation for the McKean–Vlasov stochastic differential equation," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 481-546.
    2. De Gregorio, A. & Iacus, S.M., 2013. "On a family of test statistics for discretely observed diffusion processes," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 292-316.
    3. Chiara Amorino & Arnaud Gloter, 2020. "Contrast function estimation for the drift parameter of ergodic jump diffusion process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(2), pages 279-346, June.
    4. Della Maestra, Laetitia & Hoffmann, Marc, 2023. "The LAN property for McKean–Vlasov models in a mean-field regime," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 109-146.
    5. Alessandro DE GREGORIO & Stefano Maria IACUS, 2011. "On a family of test statistics for discretely observed diffusion processes," Departmental Working Papers 2011-37, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    6. Michael Sørensen, 2008. "Parametric inference for discretely sampled stochastic differential equations," CREATES Research Papers 2008-18, Department of Economics and Business Economics, Aarhus University.
    7. Mitsuki Kobayashi & Yasutaka Shimizu, 2023. "Threshold estimation for jump-diffusions under small noise asymptotics," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 361-411, July.
    8. Nina Munkholt Jakobsen & Michael Sørensen, 2015. "Efficient Estimation for Diffusions Sampled at High Frequency Over a Fixed Time Interval," CREATES Research Papers 2015-33, Department of Economics and Business Economics, Aarhus University.
    9. Fabienne Comte & Nicolas Marie, 2021. "Nonparametric estimation for I.I.D. paths of fractional SDE," Statistical Inference for Stochastic Processes, Springer, vol. 24(3), pages 669-705, October.
    10. Chiara Amorino & Arnaud Gloter, 2021. "Joint estimation for volatility and drift parameters of ergodic jump diffusion processes via contrast function," Statistical Inference for Stochastic Processes, Springer, vol. 24(1), pages 61-148, April.
    11. Yusuke Kaino & Masayuki Uchida, 2018. "Hybrid estimators for stochastic differential equations from reduced data," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 435-454, July.
    12. Long, Hongwei & Ma, Chunhua & Shimizu, Yasutaka, 2017. "Least squares estimators for stochastic differential equations driven by small Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1475-1495.
    13. Damir Filipovi'c & Martin Larsson, 2017. "Polynomial Jump-Diffusion Models," Papers 1711.08043, arXiv.org, revised Jul 2019.
    14. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    15. Konstantin P. Belyaev & Andrey K. Gorshenin & Victor Yu. Korolev & Anastasiia A. Osipova, 2024. "Comparison of Statistical Approaches for Reconstructing Random Coefficients in the Problem of Stochastic Modeling of Air–Sea Heat Flux Increments," Mathematics, MDPI, vol. 12(2), pages 1-21, January.
    16. Jean Jacod & Michael Sørensen, 2018. "A review of asymptotic theory of estimating functions," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 415-434, July.
    17. Crucinio, Francesca R. & De Bortoli, Valentin & Doucet, Arnaud & Johansen, Adam M., 2024. "Solving a class of Fredholm integral equations of the first kind via Wasserstein gradient flows," Stochastic Processes and their Applications, Elsevier, vol. 173(C).
    18. Shoji, Isao, 1997. "A note on asymptotic properties of the estimator derived from the Euler method for diffusion processes at discrete times," Statistics & Probability Letters, Elsevier, vol. 36(2), pages 153-159, December.
    19. A. M. Kulik & N. N. Leonenko & I. Papić & N. Šuvak, 2020. "Parameter Estimation for Non-Stationary Fisher-Snedecor Diffusion," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1023-1061, September.
    20. Heldman, M. & Isaacson, S.A. & Ma, J. & Spiliopoulos, K., 2024. "Fluctuation analysis for particle-based stochastic reaction–diffusion models," Stochastic Processes and their Applications, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:163:y:2023:i:c:p:350-386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.