Least squares estimation for path-distribution dependent stochastic differential equations
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2021.126457
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Uchida, Masayuki, 2008. "Approximate martingale estimating functions for stochastic differential equations with small noises," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1706-1721, September.
- Gloter, Arnaud & Sørensen, Michael, 2009. "Estimation for stochastic differential equations with a small diffusion coefficient," Stochastic Processes and their Applications, Elsevier, vol. 119(3), pages 679-699, March.
- Naoto Kunitomo & Akihiko Takahashi, 2001. "The Asymptotic Expansion Approach to the Valuation of Interest Rate Contingent Claims," Mathematical Finance, Wiley Blackwell, vol. 11(1), pages 117-151, January.
- Long, Hongwei & Shimizu, Yasutaka & Sun, Wei, 2013. "Least squares estimators for discretely observed stochastic processes driven by small Lévy noises," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 422-439.
- Wang, Feng-Yu, 2018. "Distribution dependent SDEs for Landau type equations," Stochastic Processes and their Applications, Elsevier, vol. 128(2), pages 595-621.
- Wen, Jianghui & Wang, Xiangjun & Mao, Shuhua & Xiao, Xinping, 2016. "Maximum likelihood estimation of McKean–Vlasov stochastic differential equation and its application," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 237-246.
- Long, Hongwei & Ma, Chunhua & Shimizu, Yasutaka, 2017. "Least squares estimators for stochastic differential equations driven by small Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1475-1495.
- Akihiko Takahashi & Nakahiro Yoshida, 2004. "An Asymptotic Expansion Scheme for Optimal Investment Problems," Statistical Inference for Stochastic Processes, Springer, vol. 7(2), pages 153-188, May.
- Yasutaka Shimizu & Nakahiro Yoshida, 2006. "Estimation of Parameters for Diffusion Processes with Jumps from Discrete Observations," Statistical Inference for Stochastic Processes, Springer, vol. 9(3), pages 227-277, October.
- Hu, Yaozhong & Long, Hongwei, 2009. "Least squares estimator for Ornstein-Uhlenbeck processes driven by [alpha]-stable motions," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2465-2480, August.
- Masayuki Uchida, 2004. "Estimation for Discretely Observed Small Diffusions Based on Approximate Martingale Estimating Functions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(4), pages 553-566, December.
- Yacine Ait-Sahalia, 2002. "Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed-form Approximation Approach," Econometrica, Econometric Society, vol. 70(1), pages 223-262, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yazid Alhojilan & Hamdy M. Ahmed, 2023. "New Results Concerning Approximate Controllability of Conformable Fractional Noninstantaneous Impulsive Stochastic Evolution Equations via Poisson Jumps," Mathematics, MDPI, vol. 11(5), pages 1-16, February.
- Ma, Xiaocui & Yue, Haitao & Xi, Fubao, 2022. "The averaging method for doubly perturbed distribution dependent SDEs," Statistics & Probability Letters, Elsevier, vol. 189(C).
- Ren, Panpan, 2023. "Singular McKean–Vlasov SDEs: Well-posedness, regularities and Wang’s Harnack inequality," Stochastic Processes and their Applications, Elsevier, vol. 156(C), pages 291-311.
- Chen, Xingyuan & dos Reis, Gonçalo, 2022. "A flexible split‐step scheme for solving McKean‐Vlasov stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 427(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Long, Hongwei & Ma, Chunhua & Shimizu, Yasutaka, 2017. "Least squares estimators for stochastic differential equations driven by small Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1475-1495.
- Yasutaka Shimizu, 2017. "Threshold Estimation for Stochastic Processes with Small Noise," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 951-988, December.
- Long, Hongwei & Shimizu, Yasutaka & Sun, Wei, 2013. "Least squares estimators for discretely observed stochastic processes driven by small Lévy noises," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 422-439.
- Yusuke Kaino & Masayuki Uchida, 2018. "Hybrid estimators for small diffusion processes based on reduced data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(7), pages 745-773, October.
- Long, Hongwei, 2009. "Least squares estimator for discretely observed Ornstein-Uhlenbeck processes with small Lévy noises," Statistics & Probability Letters, Elsevier, vol. 79(19), pages 2076-2085, October.
- Xuekang Zhang & Huisheng Shu & Haoran Yi, 2023. "Parameter Estimation for Ornstein–Uhlenbeck Driven by Ornstein–Uhlenbeck Processes with Small Lévy Noises," Journal of Theoretical Probability, Springer, vol. 36(1), pages 78-98, March.
- Shu, Huisheng & Jiang, Ziwei & Zhang, Xuekang, 2023. "Parameter estimation for integrated Ornstein–Uhlenbeck processes with small Lévy noises," Statistics & Probability Letters, Elsevier, vol. 199(C).
- Guangjun Shen & Qian Yu, 2019. "Least squares estimator for Ornstein–Uhlenbeck processes driven by fractional Lévy processes from discrete observations," Statistical Papers, Springer, vol. 60(6), pages 2253-2271, December.
- Yiying Cheng & Yaozhong Hu & Hongwei Long, 2020. "Generalized moment estimators for $$\alpha $$α-stable Ornstein–Uhlenbeck motions from discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 53-81, April.
- Mitsuki Kobayashi & Yasutaka Shimizu, 2023. "Threshold estimation for jump-diffusions under small noise asymptotics," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 361-411, July.
- Yang, Xu, 2017. "Maximum likelihood type estimation for discretely observed CIR model with small α-stable noises," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 18-27.
- Ma, Chunhua & Yang, Xu, 2014. "Small noise fluctuations of the CIR model driven by α-stable noises," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 1-11.
- Jakobsen, Nina Munkholt & Sørensen, Michael, 2019. "Estimating functions for jump–diffusions," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3282-3318.
- Zhao, Huiyan & Zhang, Chongqi, 2019. "Minimum distance parameter estimation for SDEs with small α-stable noises," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 301-311.
- Uchida, Masayuki, 2008. "Approximate martingale estimating functions for stochastic differential equations with small noises," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1706-1721, September.
- Uchida, Masayuki & Yoshida, Nakahiro, 2013. "Quasi likelihood analysis of volatility and nondegeneracy of statistical random field," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2851-2876.
- Tetsuya Kawai & Masayuki Uchida, 2023. "Adaptive inference for small diffusion processes based on sampled data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(6), pages 643-696, August.
- Héctor Araya & Soledad Torres & Ciprian A. Tudor, 2024. "Least squares estimation for the Ornstein–Uhlenbeck process with small Hermite noise," Statistical Papers, Springer, vol. 65(7), pages 4745-4766, September.
- Kohta Takehara & Masashi Toda & Akihiko Takahashi, 2010. "Application Of A High-Order Asymptotic Expansion Scheme To Long-Term Currency Options," CARF F-Series CARF-F-225, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Akihiko Takahashi & Toshihiro Yamada, 2013. "On Error Estimates for Asymptotic Expansions with Malliavin Weights -Application to Stochastic Volatility Model-," CARF F-Series CARF-F-324, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Mar 2014.
More about this item
Keywords
Path-distribution dependent stochastic differential equation; Least squares estimator; Consistency; Asymptotic distribution;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:410:y:2021:i:c:s0096300321005464. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.