IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v142y2021icp513-548.html
   My bibliography  Save this article

Probabilistic properties and parametric inference of small variance nonlinear self-stabilizing stochastic differential equations

Author

Listed:
  • Genon-Catalot, Valentine
  • Larédo, Catherine

Abstract

We consider a process (Xt) solution of a one-dimensional nonlinear self-stabilizing stochastic differential equation, with classical drift term V(α,x) depending on an unknown parameter α, self-stabilizing term Φ(β,x) depending on another unknown parameter β and small noise amplitude ɛ. Self-Stabilization is the effect of including a mean-field interaction in addition to the state-dependent drift. Adding this term leads to a nonlinear or McKean-Vlasov Markov process with transitions depending on the distribution of Xt. We study the probabilistic properties of (Xt) as ɛ tends to 0 and exhibit a Gaussian approximating process for (Xt). Next, we study the estimation of (α,β) from a continuous observation of (Xt,t∈[0,T]). We build explicit estimators using an approximate log-likelihood function obtained from the exact log-likelihood function of a proxi-model. We prove that, for fixed T, as ɛ tends to 0, α can be consistently estimated with rate ɛ−1but notβ. Then, considering ni.i.d. sample paths (Xti,i=1,…,n), we build consistent and asymptotically Gaussian estimators of (α,β) with rates nɛ−1 for α and n for β. Finally, we prove that the statistical experiments generated by (Xt) and the proxi-model are asymptotically equivalent in the sense of the Le Cam Δ-distance both for the continuous observation of one path and for ni.i.d. paths under the condition nɛ→0, which justifies our statistical method.

Suggested Citation

  • Genon-Catalot, Valentine & Larédo, Catherine, 2021. "Probabilistic properties and parametric inference of small variance nonlinear self-stabilizing stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 513-548.
  • Handle: RePEc:eee:spapps:v:142:y:2021:i:c:p:513-548
    DOI: 10.1016/j.spa.2021.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414921001447
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2021.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benachour, S. & Roynette, B. & Vallois, P., 1998. "Nonlinear self-stabilizing processes - II: Convergence to invariant probability," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 203-224, July.
    2. Mathieu Kessler, 2000. "Simple and Explicit Estimating Functions for a Discretely Observed Diffusion Process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(1), pages 65-82, March.
    3. Guy, Romain & Larédo, Catherine & Vergu, Elisabeta, 2014. "Parametric inference for discretely observed multidimensional diffusions with small diffusion coefficient," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 51-80.
    4. Kay Giesecke & Gustavo Schwenkler & Justin A. Sirignano, 2020. "Inference for large financial systems," Mathematical Finance, Wiley Blackwell, vol. 30(1), pages 3-46, January.
    5. Fernandez, Begoña & Méléard, Sylvie, 1997. "A Hilbertian approach for fluctuations on the McKean-Vlasov model," Stochastic Processes and their Applications, Elsevier, vol. 71(1), pages 33-53, October.
    6. Gloter, Arnaud & Sørensen, Michael, 2009. "Estimation for stochastic differential equations with a small diffusion coefficient," Stochastic Processes and their Applications, Elsevier, vol. 119(3), pages 679-699, March.
    7. Benachour, S. & Roynette, B. & Talay, D. & Vallois, P., 1998. "Nonlinear self-stabilizing processes - I Existence, invariant probability, propagation of chaos," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 173-201, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amorino, Chiara & Heidari, Akram & Pilipauskaitė, Vytautė & Podolskij, Mark, 2023. "Parameter estimation of discretely observed interacting particle systems," Stochastic Processes and their Applications, Elsevier, vol. 163(C), pages 350-386.
    2. Della Maestra, Laetitia & Hoffmann, Marc, 2023. "The LAN property for McKean–Vlasov models in a mean-field regime," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 109-146.
    3. Sharrock, Louis & Kantas, Nikolas & Parpas, Panos & Pavliotis, Grigorios A., 2023. "Online parameter estimation for the McKean–Vlasov stochastic differential equation," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 481-546.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharrock, Louis & Kantas, Nikolas & Parpas, Panos & Pavliotis, Grigorios A., 2023. "Online parameter estimation for the McKean–Vlasov stochastic differential equation," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 481-546.
    2. Malrieu, F., 2001. "Logarithmic Sobolev inequalities for some nonlinear PDE's," Stochastic Processes and their Applications, Elsevier, vol. 95(1), pages 109-132, September.
    3. Tugaut, Julian, 2013. "Self-stabilizing processes in multi-wells landscape in Rd-convergence," Stochastic Processes and their Applications, Elsevier, vol. 123(5), pages 1780-1801.
    4. Guy, Romain & Larédo, Catherine & Vergu, Elisabeta, 2014. "Parametric inference for discretely observed multidimensional diffusions with small diffusion coefficient," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 51-80.
    5. Julian Tugaut, 2014. "Self-stabilizing Processes in Multi-wells Landscape in ℝ d -Invariant Probabilities," Journal of Theoretical Probability, Springer, vol. 27(1), pages 57-79, March.
    6. Herrmann, S. & Tugaut, J., 2010. "Non-uniqueness of stationary measures for self-stabilizing processes," Stochastic Processes and their Applications, Elsevier, vol. 120(7), pages 1215-1246, July.
    7. Tetsuya Kawai & Masayuki Uchida, 2023. "Adaptive inference for small diffusion processes based on sampled data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(6), pages 643-696, August.
    8. De Gregorio, A. & Iacus, S.M., 2013. "On a family of test statistics for discretely observed diffusion processes," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 292-316.
    9. A. M. Kulik & N. N. Leonenko & I. Papić & N. Šuvak, 2020. "Parameter Estimation for Non-Stationary Fisher-Snedecor Diffusion," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1023-1061, September.
    10. Ren, Panpan & Wu, Jiang-Lun, 2021. "Least squares estimation for path-distribution dependent stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    11. Guangjun Shen & Qian Yu, 2019. "Least squares estimator for Ornstein–Uhlenbeck processes driven by fractional Lévy processes from discrete observations," Statistical Papers, Springer, vol. 60(6), pages 2253-2271, December.
    12. Yasutaka Shimizu, 2017. "Threshold Estimation for Stochastic Processes with Small Noise," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 951-988, December.
    13. Long, Hongwei & Shimizu, Yasutaka & Sun, Wei, 2013. "Least squares estimators for discretely observed stochastic processes driven by small Lévy noises," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 422-439.
    14. Friedrich Hubalek & Petra Posedel, 2011. "Joint analysis and estimation of stock prices and trading volume in Barndorff-Nielsen and Shephard stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 11(6), pages 917-932.
    15. Alessandro Gregorio & Francesco Iafrate, 2021. "Regularized bridge-type estimation with multiple penalties," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 921-951, October.
    16. Leah Kelly, 2004. "Inference and Intraday Analysis of Diversified World Stock Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 24, July-Dece.
    17. Ma, Chunhua, 2010. "A note on "Least squares estimator for discretely observed Ornstein-Uhlenbeck processes with small Lévy noises"," Statistics & Probability Letters, Elsevier, vol. 80(19-20), pages 1528-1531, October.
    18. Benachour, S. & Roynette, B. & Vallois, P., 1998. "Nonlinear self-stabilizing processes - II: Convergence to invariant probability," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 203-224, July.
    19. Mitsuki Kobayashi & Yasutaka Shimizu, 2023. "Threshold estimation for jump-diffusions under small noise asymptotics," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 361-411, July.
    20. Helle Sørensen, 2002. "Parametric Inference for Diffusion Processes Observed at Discrete Points in Time: a Survey," Discussion Papers 02-08, University of Copenhagen. Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:142:y:2021:i:c:p:513-548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.