A Hilbertian approach for fluctuations on the McKean-Vlasov model
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hitsuda, Masuyuki & Mitoma, Itaru, 1986. "Tightness problem and stochastic evolution equation arising from fluctuation phenomena for interacting diffusions," Journal of Multivariate Analysis, Elsevier, vol. 19(2), pages 311-328, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Amorino, Chiara & Heidari, Akram & Pilipauskaitė, Vytautė & Podolskij, Mark, 2023. "Parameter estimation of discretely observed interacting particle systems," Stochastic Processes and their Applications, Elsevier, vol. 163(C), pages 350-386.
- Genon-Catalot, Valentine & Larédo, Catherine, 2021. "Probabilistic properties and parametric inference of small variance nonlinear self-stabilizing stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 513-548.
- Heldman, M. & Isaacson, S.A. & Ma, J. & Spiliopoulos, K., 2024. "Fluctuation analysis for particle-based stochastic reaction–diffusion models," Stochastic Processes and their Applications, Elsevier, vol. 167(C).
- Sirignano, Justin & Spiliopoulos, Konstantinos, 2020. "Mean field analysis of neural networks: A central limit theorem," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1820-1852.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chevallier, Julien & Ost, Guilherme, 2020. "Fluctuations for spatially extended Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5510-5542.
- Kurtz, Thomas G. & Xiong, Jie, 1999. "Particle representations for a class of nonlinear SPDEs," Stochastic Processes and their Applications, Elsevier, vol. 83(1), pages 103-126, September.
- Jie Xiong & Yong Zeng, 2011. "A branching particle approximation to a filtering micromovement model of asset price," Statistical Inference for Stochastic Processes, Springer, vol. 14(2), pages 111-140, May.
More about this item
Keywords
Convergence of fluctuations McKean-Vlasov equation Weighted Sobolev spaces;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:71:y:1997:i:1:p:33-53. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.