IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v173y2024ics0304414924000802.html
   My bibliography  Save this article

Solving a class of Fredholm integral equations of the first kind via Wasserstein gradient flows

Author

Listed:
  • Crucinio, Francesca R.
  • De Bortoli, Valentin
  • Doucet, Arnaud
  • Johansen, Adam M.

Abstract

Solving Fredholm equations of the first kind is crucial in many areas of the applied sciences. In this work we consider integral equations featuring kernels which may be expressed as scalar multiples of conservative (i.e. Markov) kernels and we adopt a variational point of view by considering a minimization problem in the space of probability measures with an entropic regularization. Contrary to classical approaches which discretize the domain of the solutions, we introduce an algorithm to asymptotically sample from the unique solution of the regularized minimization problem. As a result our estimators do not depend on any underlying grid and have better scalability properties than most existing methods. Our algorithm is based on a particle approximation of the solution of a McKean–Vlasov stochastic differential equation associated with the Wasserstein gradient flow of our variational formulation. We prove the convergence towards a minimizer and provide practical guidelines for its numerical implementation. Finally, our method is compared with other approaches on several examples including density deconvolution and epidemiology.

Suggested Citation

  • Crucinio, Francesca R. & De Bortoli, Valentin & Doucet, Arnaud & Johansen, Adam M., 2024. "Solving a class of Fredholm integral equations of the first kind via Wasserstein gradient flows," Stochastic Processes and their Applications, Elsevier, vol. 173(C).
  • Handle: RePEc:eee:spapps:v:173:y:2024:i:c:s0304414924000802
    DOI: 10.1016/j.spa.2024.104374
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414924000802
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2024.104374?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:173:y:2024:i:c:s0304414924000802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.