IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v127y2017i3p901-926.html
   My bibliography  Save this article

Polynomial diffusions on compact quadric sets

Author

Listed:
  • Larsson, Martin
  • Pulido, Sergio

Abstract

Polynomial processes are defined by the property that conditional expectations of polynomial functions of the process are again polynomials of the same or lower degree. Many fundamental stochastic processes, including affine processes, are polynomial, and their tractable structure makes them important in applications. In this paper we study polynomial diffusions whose state space is a compact quadric set. Necessary and sufficient conditions for existence, uniqueness, and boundary attainment are given. The existence of a convenient parameterization of the generator is shown to be closely related to the classical problem of expressing nonnegative polynomials–specifically, biquadratic forms vanishing on the diagonal–as a sum of squares. We prove that in dimension d≤4 every such biquadratic form is a sum of squares, while for d≥6 there are counterexamples. The case d=5 remains open. An equivalent probabilistic description of the sum of squares property is provided, and we show how it can be used to obtain results on pathwise uniqueness and existence of smooth densities.

Suggested Citation

  • Larsson, Martin & Pulido, Sergio, 2017. "Polynomial diffusions on compact quadric sets," Stochastic Processes and their Applications, Elsevier, vol. 127(3), pages 901-926.
  • Handle: RePEc:eee:spapps:v:127:y:2017:i:3:p:901-926
    DOI: 10.1016/j.spa.2016.07.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414915301332
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2016.07.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Julie Lyng Forman & Michael Sørensen, 2008. "The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 438-465, September.
    2. Damir Filipović & Martin Larsson, 2016. "Polynomial diffusions and applications in finance," Finance and Stochastics, Springer, vol. 20(4), pages 931-972, October.
    3. Filipović, Damir & Gourier, Elise & Mancini, Loriano, 2016. "Quadratic variance swap models," Journal of Financial Economics, Elsevier, vol. 119(1), pages 44-68.
    4. Hao Zhou, 2003. "Itô Conditional Moment Generator and the Estimation of Short-Rate Processes," Journal of Financial Econometrics, Oxford University Press, vol. 1(2), pages 250-271.
    5. Christa Cuchiero & Martin Keller-Ressel & Josef Teichmann, 2012. "Polynomial processes and their applications to mathematical finance," Finance and Stochastics, Springer, vol. 16(4), pages 711-740, October.
    6. Damir FILIPOVIC & Martin LARSSON & Anders TROLLE, 2014. "Linear-Rational Term Structure Models," Swiss Finance Institute Research Paper Series 14-15, Swiss Finance Institute.
    7. Swart, J. M., 2002. "Pathwise uniqueness for a SDE with non-Lipschitz coefficients," Stochastic Processes and their Applications, Elsevier, vol. 98(1), pages 131-149, March.
    8. Gourieroux, Christian & Jasiak, Joann, 2006. "Multivariate Jacobi process with application to smooth transitions," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 475-505.
    9. Kristian Stegenborg Larsen & Michael Sørensen, 2007. "Diffusion Models For Exchange Rates In A Target Zone," Mathematical Finance, Wiley Blackwell, vol. 17(2), pages 285-306, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Damir Filipovi'c & Martin Larsson, 2017. "Polynomial Jump-Diffusion Models," Papers 1711.08043, arXiv.org, revised Jul 2019.
    2. Damien Ackerer & Damir Filipović & Sergio Pulido, 2018. "The Jacobi stochastic volatility model," Finance and Stochastics, Springer, vol. 22(3), pages 667-700, July.
    3. Damir Filipovic & Damien Ackerer & Sergio Pulido, 2018. "The Jacobi Stochastic Volatility Model," Post-Print hal-01338330, HAL.
    4. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2019. "A general framework for time-changed Markov processes and applications," European Journal of Operational Research, Elsevier, vol. 273(2), pages 785-800.
    5. Abi Jaber, Eduardo & Bouchard, Bruno & Illand, Camille, 2019. "Stochastic invariance of closed sets with non-Lipschitz coefficients," Stochastic Processes and their Applications, Elsevier, vol. 129(5), pages 1726-1748.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damir Filipovi'c & Martin Larsson, 2017. "Polynomial Jump-Diffusion Models," Papers 1711.08043, arXiv.org, revised Jul 2019.
    2. Damir Filipović & Martin Larsson, 2016. "Polynomial diffusions and applications in finance," Finance and Stochastics, Springer, vol. 20(4), pages 931-972, October.
    3. Filipović, Damir & Larsson, Martin & Pulido, Sergio, 2020. "Markov cubature rules for polynomial processes," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 1947-1971.
    4. Damir Filipovi'c & Martin Larsson & Sergio Pulido, 2017. "Markov cubature rules for polynomial processes," Papers 1707.06849, arXiv.org, revised Jun 2019.
    5. Christa Cuchiero, 2017. "Polynomial processes in stochastic portfolio theory," Papers 1705.03647, arXiv.org.
    6. repec:uts:finphd:41 is not listed on IDEAS
    7. Cuchiero, Christa, 2019. "Polynomial processes in stochastic portfolio theory," Stochastic Processes and their Applications, Elsevier, vol. 129(5), pages 1829-1872.
    8. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    9. Christa Cuchiero & Sara Svaluto-Ferro, 2019. "Infinite dimensional polynomial processes," Papers 1911.02614, arXiv.org.
    10. Mar'ia Fernanda del Carmen Agoitia Hurtado & Thorsten Schmidt, 2018. "Time-inhomogeneous polynomial processes," Papers 1806.03887, arXiv.org.
    11. Damir Filipovic & Damien Ackerer & Sergio Pulido, 2018. "The Jacobi Stochastic Volatility Model," Post-Print hal-01338330, HAL.
    12. Junting Liu & Qi Wang & Yuanyuan Zhang, 2024. "VIX option pricing through nonaffine GARCH dynamics and semianalytical formula," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1189-1223, July.
    13. Julie Lyng Forman & Michael Sørensen, 2008. "The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 438-465, September.
    14. Christa Cuchiero & Sara Svaluto-Ferro, 2021. "Infinite-dimensional polynomial processes," Finance and Stochastics, Springer, vol. 25(2), pages 383-426, April.
    15. Damien Ackerer & Damir Filipović & Sergio Pulido, 2018. "The Jacobi stochastic volatility model," Finance and Stochastics, Springer, vol. 22(3), pages 667-700, July.
    16. Christa Cuchiero & Martin Keller-Ressel & Josef Teichmann, 2012. "Polynomial processes and their applications to mathematical finance," Finance and Stochastics, Springer, vol. 16(4), pages 711-740, October.
    17. Xi Kleisinger-Yu & Vlatka Komaric & Martin Larsson & Markus Regez, 2019. "A multi-factor polynomial framework for long-term electricity forwards with delivery period," Papers 1908.08954, arXiv.org, revised Jun 2020.
    18. Christa Cuchiero & Martin Larsson & Sara Svaluto-Ferro, 2018. "Probability measure-valued polynomial diffusions," Papers 1807.03229, arXiv.org.
    19. Pierre-Edouard Arrouy & Sophian Mehalla & Bernard Lapeyre & Alexandre Boumezoued, 2020. "Jacobi Stochastic Volatility factor for the Libor Market Model," Working Papers hal-02468583, HAL.
    20. Hlouskova, Jaroslava & Sögner, Leopold, 2020. "GMM estimation of affine term structure models," Econometrics and Statistics, Elsevier, vol. 13(C), pages 2-15.
    21. Pierre-Edouard Arrouy & Alexandre Boumezoued & Bernard Lapeyre & Sophian Mehalla, 2022. "Jacobi stochastic volatility factor for the LIBOR market model," Finance and Stochastics, Springer, vol. 26(4), pages 771-823, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:127:y:2017:i:3:p:901-926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.