IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v80y2010i19-20p1528-1531.html
   My bibliography  Save this article

A note on "Least squares estimator for discretely observed Ornstein-Uhlenbeck processes with small Lévy noises"

Author

Listed:
  • Ma, Chunhua

Abstract

The asymptotic estimation of drift parameter is studied for generalized Ornstein-Uhlenbeck processes with small Lévy noises. We extend the work of Long (2009) and show that the main results of Long (2009) hold under the weaker conditions.

Suggested Citation

  • Ma, Chunhua, 2010. "A note on "Least squares estimator for discretely observed Ornstein-Uhlenbeck processes with small Lévy noises"," Statistics & Probability Letters, Elsevier, vol. 80(19-20), pages 1528-1531, October.
  • Handle: RePEc:eee:stapro:v:80:y:2010:i:19-20:p:1528-1531
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00167-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Long, Hongwei, 2009. "Least squares estimator for discretely observed Ornstein-Uhlenbeck processes with small Lévy noises," Statistics & Probability Letters, Elsevier, vol. 79(19), pages 2076-2085, October.
    2. Gloter, Arnaud & Sørensen, Michael, 2009. "Estimation for stochastic differential equations with a small diffusion coefficient," Stochastic Processes and their Applications, Elsevier, vol. 119(3), pages 679-699, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Chunhua & Yang, Xu, 2014. "Small noise fluctuations of the CIR model driven by α-stable noises," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 1-11.
    2. Long, Hongwei & Ma, Chunhua & Shimizu, Yasutaka, 2017. "Least squares estimators for stochastic differential equations driven by small Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1475-1495.
    3. Xuekang Zhang & Huisheng Shu & Haoran Yi, 2023. "Parameter Estimation for Ornstein–Uhlenbeck Driven by Ornstein–Uhlenbeck Processes with Small Lévy Noises," Journal of Theoretical Probability, Springer, vol. 36(1), pages 78-98, March.
    4. Zhang, Xuekang & Yi, Haoran & Shu, Huisheng, 2019. "Nonparametric estimation of the trend for stochastic differential equations driven by small α-stable noises," Statistics & Probability Letters, Elsevier, vol. 151(C), pages 8-16.
    5. Yasutaka Shimizu, 2017. "Threshold Estimation for Stochastic Processes with Small Noise," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 951-988, December.
    6. Long, Hongwei & Shimizu, Yasutaka & Sun, Wei, 2013. "Least squares estimators for discretely observed stochastic processes driven by small Lévy noises," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 422-439.
    7. Héctor Araya & Soledad Torres & Ciprian A. Tudor, 2024. "Least squares estimation for the Ornstein–Uhlenbeck process with small Hermite noise," Statistical Papers, Springer, vol. 65(7), pages 4745-4766, September.
    8. Shu, Huisheng & Jiang, Ziwei & Zhang, Xuekang, 2023. "Parameter estimation for integrated Ornstein–Uhlenbeck processes with small Lévy noises," Statistics & Probability Letters, Elsevier, vol. 199(C).
    9. Qian Yu, 2021. "Least squares estimator of fractional Ornstein–Uhlenbeck processes with periodic mean for general Hurst parameter," Statistical Papers, Springer, vol. 62(2), pages 795-815, April.
    10. Yang, Xu, 2017. "Maximum likelihood type estimation for discretely observed CIR model with small α-stable noises," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 18-27.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangjun Shen & Qian Yu, 2019. "Least squares estimator for Ornstein–Uhlenbeck processes driven by fractional Lévy processes from discrete observations," Statistical Papers, Springer, vol. 60(6), pages 2253-2271, December.
    2. Yasutaka Shimizu, 2017. "Threshold Estimation for Stochastic Processes with Small Noise," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 951-988, December.
    3. Long, Hongwei & Shimizu, Yasutaka & Sun, Wei, 2013. "Least squares estimators for discretely observed stochastic processes driven by small Lévy noises," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 422-439.
    4. Yang, Xu, 2017. "Maximum likelihood type estimation for discretely observed CIR model with small α-stable noises," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 18-27.
    5. Ma, Chunhua & Yang, Xu, 2014. "Small noise fluctuations of the CIR model driven by α-stable noises," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 1-11.
    6. Long, Hongwei & Ma, Chunhua & Shimizu, Yasutaka, 2017. "Least squares estimators for stochastic differential equations driven by small Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1475-1495.
    7. De Gregorio, A. & Iacus, S.M., 2013. "On a family of test statistics for discretely observed diffusion processes," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 292-316.
    8. Qian Yu, 2021. "Least squares estimator of fractional Ornstein–Uhlenbeck processes with periodic mean for general Hurst parameter," Statistical Papers, Springer, vol. 62(2), pages 795-815, April.
    9. Ren, Panpan & Wu, Jiang-Lun, 2021. "Least squares estimation for path-distribution dependent stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    10. Zhang, Xuekang & Yi, Haoran & Shu, Huisheng, 2019. "Nonparametric estimation of the trend for stochastic differential equations driven by small α-stable noises," Statistics & Probability Letters, Elsevier, vol. 151(C), pages 8-16.
    11. Zhao, Huiyan & Zhang, Chongqi, 2019. "Minimum distance parameter estimation for SDEs with small α-stable noises," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 301-311.
    12. Alessandro Gregorio & Francesco Iafrate, 2021. "Regularized bridge-type estimation with multiple penalties," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 921-951, October.
    13. Wang, Xiaolong & Feng, Jing & Liu, Qi & Li, Yongge & Xu, Yong, 2022. "Neural network-based parameter estimation of stochastic differential equations driven by Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    14. Yiying Cheng & Yaozhong Hu & Hongwei Long, 2020. "Generalized moment estimators for $$\alpha $$α-stable Ornstein–Uhlenbeck motions from discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 53-81, April.
    15. Yanfeng Wu & Jianqiang Hu & Xiangyu Yang, 2022. "Moment estimators for parameters of Lévy‐driven Ornstein–Uhlenbeck processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(4), pages 610-639, July.
    16. Genon-Catalot, Valentine & Larédo, Catherine, 2021. "Probabilistic properties and parametric inference of small variance nonlinear self-stabilizing stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 513-548.
    17. Mitsuki Kobayashi & Yasutaka Shimizu, 2023. "Threshold estimation for jump-diffusions under small noise asymptotics," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 361-411, July.
    18. Shu, Huisheng & Jiang, Ziwei & Zhang, Xuekang, 2023. "Parameter estimation for integrated Ornstein–Uhlenbeck processes with small Lévy noises," Statistics & Probability Letters, Elsevier, vol. 199(C).
    19. Xuekang Zhang & Huisheng Shu & Haoran Yi, 2023. "Parameter Estimation for Ornstein–Uhlenbeck Driven by Ornstein–Uhlenbeck Processes with Small Lévy Noises," Journal of Theoretical Probability, Springer, vol. 36(1), pages 78-98, March.
    20. Reiichiro Kawai, 2013. "Local Asymptotic Normality Property for Ornstein–Uhlenbeck Processes with Jumps Under Discrete Sampling," Journal of Theoretical Probability, Springer, vol. 26(4), pages 932-967, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:80:y:2010:i:19-20:p:1528-1531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.