IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v124y2014i1p51-80.html
   My bibliography  Save this article

Parametric inference for discretely observed multidimensional diffusions with small diffusion coefficient

Author

Listed:
  • Guy, Romain
  • Larédo, Catherine
  • Vergu, Elisabeta

Abstract

We consider a multidimensional diffusion X with drift coefficient b(α,Xt) and diffusion coefficient ϵσ(β,Xt). The diffusion sample path is discretely observed at times tk=kΔ for k=1…n on a fixed interval [0,T]. We study minimum contrast estimators derived from the Gaussian process approximating X for small ϵ. We obtain consistent and asymptotically normal estimators of α for fixed Δ and ϵ→0 and of (α,β) for Δ→0 and ϵ→0 without any condition linking ϵ and Δ. We compare the estimators obtained with various methods and for various magnitudes of Δ and ϵ based on simulation studies. Finally, we investigate the interest of using such methods in an epidemiological framework.

Suggested Citation

  • Guy, Romain & Larédo, Catherine & Vergu, Elisabeta, 2014. "Parametric inference for discretely observed multidimensional diffusions with small diffusion coefficient," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 51-80.
  • Handle: RePEc:eee:spapps:v:124:y:2014:i:1:p:51-80
    DOI: 10.1016/j.spa.2013.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414913002044
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2013.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 1995. "A Simple Approach to Valuing Risky Fixed and Floating Rate Debt," Journal of Finance, American Finance Association, vol. 50(3), pages 789-819, July.
    2. Mathieu Kessler, 2000. "Simple and Explicit Estimating Functions for a Discretely Observed Diffusion Process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(1), pages 65-82, March.
    3. Hansen, Lars Peter & Scheinkman, Jose Alexandre, 1995. "Back to the Future: Generating Moment Implications for Continuous-Time Markov Processes," Econometrica, Econometric Society, vol. 63(4), pages 767-804, July.
    4. Gloter, Arnaud & Sørensen, Michael, 2009. "Estimation for stochastic differential equations with a small diffusion coefficient," Stochastic Processes and their Applications, Elsevier, vol. 119(3), pages 679-699, March.
    5. Yoshida, Nakahiro, 1992. "Estimation for diffusion processes from discrete observation," Journal of Multivariate Analysis, Elsevier, vol. 41(2), pages 220-242, May.
    6. Masayuki Uchida, 2004. "Estimation for Discretely Observed Small Diffusions Based on Approximate Martingale Estimating Functions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(4), pages 553-566, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Genon-Catalot, Valentine & Larédo, Catherine, 2021. "Probabilistic properties and parametric inference of small variance nonlinear self-stabilizing stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 513-548.
    2. Héctor Araya & Soledad Torres & Ciprian A. Tudor, 2024. "Least squares estimation for the Ornstein–Uhlenbeck process with small Hermite noise," Statistical Papers, Springer, vol. 65(7), pages 4745-4766, September.
    3. Narci, Romain & Delattre, Maud & Larédo, Catherine & Vergu, Elisabeta, 2021. "Inference for partially observed epidemic dynamics guided by Kalman filtering techniques," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
    4. Tetsuya Kawai & Masayuki Uchida, 2023. "Adaptive inference for small diffusion processes based on sampled data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(6), pages 643-696, August.
    5. Yusuke Kaino & Masayuki Uchida, 2018. "Hybrid estimators for small diffusion processes based on reduced data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(7), pages 745-773, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations. Working paper #2," NCER Working Paper Series 2, National Centre for Econometric Research.
    2. A. S. Hurn & J. I. Jeisman & K. A. Lindsay, 0. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations," Journal of Financial Econometrics, Oxford University Press, vol. 5(3), pages 390-455.
    3. Michael Sørensen, 2008. "Parametric inference for discretely sampled stochastic differential equations," CREATES Research Papers 2008-18, Department of Economics and Business Economics, Aarhus University.
    4. Gloter, Arnaud & Sørensen, Michael, 2009. "Estimation for stochastic differential equations with a small diffusion coefficient," Stochastic Processes and their Applications, Elsevier, vol. 119(3), pages 679-699, March.
    5. J. Jimenez & R. Biscay & T. Ozaki, 2005. "Inference Methods for Discretely Observed Continuous-Time Stochastic Volatility Models: A Commented Overview," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 12(2), pages 109-141, June.
    6. Tetsuya Kawai & Masayuki Uchida, 2023. "Adaptive inference for small diffusion processes based on sampled data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(6), pages 643-696, August.
    7. De Gregorio, A. & Iacus, S.M., 2013. "On a family of test statistics for discretely observed diffusion processes," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 292-316.
    8. Ren, Panpan & Wu, Jiang-Lun, 2021. "Least squares estimation for path-distribution dependent stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    9. Yasutaka Shimizu, 2017. "Threshold Estimation for Stochastic Processes with Small Noise," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 951-988, December.
    10. Long, Hongwei & Shimizu, Yasutaka & Sun, Wei, 2013. "Least squares estimators for discretely observed stochastic processes driven by small Lévy noises," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 422-439.
    11. Friedrich Hubalek & Petra Posedel, 2011. "Joint analysis and estimation of stock prices and trading volume in Barndorff-Nielsen and Shephard stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 11(6), pages 917-932.
    12. Alessandro Gregorio & Francesco Iafrate, 2021. "Regularized bridge-type estimation with multiple penalties," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 921-951, October.
    13. Leah Kelly, 2004. "Inference and Intraday Analysis of Diversified World Stock Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 24, July-Dece.
    14. Uchida, Masayuki, 2008. "Approximate martingale estimating functions for stochastic differential equations with small noises," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1706-1721, September.
    15. Genon-Catalot, Valentine & Larédo, Catherine, 2021. "Probabilistic properties and parametric inference of small variance nonlinear self-stabilizing stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 513-548.
    16. Uchida, Masayuki & Yoshida, Nakahiro, 2013. "Quasi likelihood analysis of volatility and nondegeneracy of statistical random field," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2851-2876.
    17. Helle Sørensen, 2002. "Parametric Inference for Diffusion Processes Observed at Discrete Points in Time: a Survey," Discussion Papers 02-08, University of Copenhagen. Department of Economics.
    18. Nina Munkholt Jakobsen & Michael Sørensen, 2015. "Efficient Estimation for Diffusions Sampled at High Frequency Over a Fixed Time Interval," CREATES Research Papers 2015-33, Department of Economics and Business Economics, Aarhus University.
    19. Yang, Xu, 2017. "Maximum likelihood type estimation for discretely observed CIR model with small α-stable noises," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 18-27.
    20. Ma, Chunhua & Yang, Xu, 2014. "Small noise fluctuations of the CIR model driven by α-stable noises," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 1-11.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:124:y:2014:i:1:p:51-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.