IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v86y2023i6d10.1007_s00184-022-00889-8.html
   My bibliography  Save this article

Adaptive inference for small diffusion processes based on sampled data

Author

Listed:
  • Tetsuya Kawai

    (Toyota Motor Corporation)

  • Masayuki Uchida

    (Osaka University and JST CREST)

Abstract

We consider parametric estimation and tests for multi-dimensional diffusion processes with a small dispersion parameter $$\varepsilon $$ ε from discrete observations. For parametric estimation of diffusion processes, the main target is to estimate the drift parameter and the diffusion parameter. In this paper, we propose two types of adaptive estimators for both parameters and show their asymptotic properties under $$\varepsilon \rightarrow 0$$ ε → 0 , $$n\rightarrow \infty $$ n → ∞ and the balance condition that $$(\varepsilon n^\rho )^{-1} =O(1)$$ ( ε n ρ ) - 1 = O ( 1 ) for some $$\rho >0$$ ρ > 0 . Using these adaptive estimators, we also introduce consistent adaptive testing methods and prove that test statistics for adaptive tests have asymptotic distributions under null hypothesis. In simulation studies, we examine and compare asymptotic behaviors of the two kinds of adaptive estimators and test statistics. Moreover, we treat the SIR model which describes a simple epidemic spread for a biological application.

Suggested Citation

  • Tetsuya Kawai & Masayuki Uchida, 2023. "Adaptive inference for small diffusion processes based on sampled data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(6), pages 643-696, August.
  • Handle: RePEc:spr:metrik:v:86:y:2023:i:6:d:10.1007_s00184-022-00889-8
    DOI: 10.1007/s00184-022-00889-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-022-00889-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-022-00889-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Uchida, Masayuki, 2008. "Approximate martingale estimating functions for stochastic differential equations with small noises," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1706-1721, September.
    2. Masayuki Uchida & Nakahiro Yoshida, 2004. "Asymptotic Expansion for Small Diffusions Applied to Option Pricing," Statistical Inference for Stochastic Processes, Springer, vol. 7(3), pages 189-223, October.
    3. Yusuke Kaino & Masayuki Uchida, 2018. "Hybrid estimators for small diffusion processes based on reduced data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(7), pages 745-773, October.
    4. Gloter, Arnaud & Sørensen, Michael, 2009. "Estimation for stochastic differential equations with a small diffusion coefficient," Stochastic Processes and their Applications, Elsevier, vol. 119(3), pages 679-699, March.
    5. Shogo H. Nakakita & Masayuki Uchida, 2019. "Inference for ergodic diffusions plus noise," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 46(2), pages 470-516, June.
    6. Guy, Romain & Larédo, Catherine & Vergu, Elisabeta, 2014. "Parametric inference for discretely observed multidimensional diffusions with small diffusion coefficient," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 51-80.
    7. Yoshida, Nakahiro, 1992. "Estimation for diffusion processes from discrete observation," Journal of Multivariate Analysis, Elsevier, vol. 41(2), pages 220-242, May.
    8. Yoshida, Nakahiro, 2003. "Conditional expansions and their applications," Stochastic Processes and their Applications, Elsevier, vol. 107(1), pages 53-81, September.
    9. Masayuki Uchida, 2004. "Estimation for Discretely Observed Small Diffusions Based on Approximate Martingale Estimating Functions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(4), pages 553-566, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Long, Hongwei & Ma, Chunhua & Shimizu, Yasutaka, 2017. "Least squares estimators for stochastic differential equations driven by small Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1475-1495.
    2. Long, Hongwei & Shimizu, Yasutaka & Sun, Wei, 2013. "Least squares estimators for discretely observed stochastic processes driven by small Lévy noises," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 422-439.
    3. Yusuke Kaino & Masayuki Uchida, 2018. "Hybrid estimators for small diffusion processes based on reduced data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(7), pages 745-773, October.
    4. Yasutaka Shimizu, 2017. "Threshold Estimation for Stochastic Processes with Small Noise," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 951-988, December.
    5. Uchida, Masayuki, 2008. "Approximate martingale estimating functions for stochastic differential equations with small noises," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1706-1721, September.
    6. Long, Hongwei, 2009. "Least squares estimator for discretely observed Ornstein-Uhlenbeck processes with small Lévy noises," Statistics & Probability Letters, Elsevier, vol. 79(19), pages 2076-2085, October.
    7. Yang, Xu, 2017. "Maximum likelihood type estimation for discretely observed CIR model with small α-stable noises," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 18-27.
    8. Ma, Chunhua & Yang, Xu, 2014. "Small noise fluctuations of the CIR model driven by α-stable noises," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 1-11.
    9. Ren, Panpan & Wu, Jiang-Lun, 2021. "Least squares estimation for path-distribution dependent stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    10. Xuekang Zhang & Huisheng Shu & Haoran Yi, 2023. "Parameter Estimation for Ornstein–Uhlenbeck Driven by Ornstein–Uhlenbeck Processes with Small Lévy Noises," Journal of Theoretical Probability, Springer, vol. 36(1), pages 78-98, March.
    11. Guy, Romain & Larédo, Catherine & Vergu, Elisabeta, 2014. "Parametric inference for discretely observed multidimensional diffusions with small diffusion coefficient," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 51-80.
    12. Gloter, Arnaud & Sørensen, Michael, 2009. "Estimation for stochastic differential equations with a small diffusion coefficient," Stochastic Processes and their Applications, Elsevier, vol. 119(3), pages 679-699, March.
    13. Uchida, Masayuki & Yoshida, Nakahiro, 2013. "Quasi likelihood analysis of volatility and nondegeneracy of statistical random field," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2851-2876.
    14. Shogo H. Nakakita & Yusuke Kaino & Masayuki Uchida, 2021. "Quasi-likelihood analysis and Bayes-type estimators of an ergodic diffusion plus noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 177-225, February.
    15. De Gregorio, A. & Iacus, S.M., 2013. "On a family of test statistics for discretely observed diffusion processes," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 292-316.
    16. Yoshida, Nakahiro, 2023. "Asymptotic expansion and estimates of Wiener functionals," Stochastic Processes and their Applications, Elsevier, vol. 157(C), pages 176-248.
    17. Ogihara, Teppei & Yoshida, Nakahiro, 2014. "Quasi-likelihood analysis for nonsynchronously observed diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 124(9), pages 2954-3008.
    18. Tudor, Ciprian A. & Yoshida, Nakahiro, 2023. "High order asymptotic expansion for Wiener functionals," Stochastic Processes and their Applications, Elsevier, vol. 164(C), pages 443-492.
    19. Alessandro Gregorio & Francesco Iafrate, 2021. "Regularized bridge-type estimation with multiple penalties," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 921-951, October.
    20. Genon-Catalot, Valentine & Larédo, Catherine, 2021. "Probabilistic properties and parametric inference of small variance nonlinear self-stabilizing stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 513-548.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:86:y:2023:i:6:d:10.1007_s00184-022-00889-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.