IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v123y2013i5p1780-1801.html
   My bibliography  Save this article

Self-stabilizing processes in multi-wells landscape in Rd-convergence

Author

Listed:
  • Tugaut, Julian

Abstract

Self-stabilizing processes are inhomogeneous diffusions in which the law of the process intervenes in the drift. If the external force is the gradient of a convex potential, it has been proved that the process converges towards the unique invariant probability as the time goes to infinity. However, in a previous article, we established that the diffusion may admit several invariant probabilities, provided that the external force derives from a non-convex potential. We here provide results about the limiting values of the family {μt;t≥0}, μt being the law of the diffusion. Moreover, we establish the weak convergence under an additional hypothesis.

Suggested Citation

  • Tugaut, Julian, 2013. "Self-stabilizing processes in multi-wells landscape in Rd-convergence," Stochastic Processes and their Applications, Elsevier, vol. 123(5), pages 1780-1801.
  • Handle: RePEc:eee:spapps:v:123:y:2013:i:5:p:1780-1801
    DOI: 10.1016/j.spa.2012.12.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414912002645
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2012.12.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benachour, S. & Roynette, B. & Vallois, P., 1998. "Nonlinear self-stabilizing processes - II: Convergence to invariant probability," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 203-224, July.
    2. Malrieu, F., 2001. "Logarithmic Sobolev inequalities for some nonlinear PDE's," Stochastic Processes and their Applications, Elsevier, vol. 95(1), pages 109-132, September.
    3. Graham, Carl, 1992. "McKean-Vlasov Ito-Skorohod equations, and nonlinear diffusions with discrete jump sets," Stochastic Processes and their Applications, Elsevier, vol. 40(1), pages 69-82, February.
    4. Benachour, S. & Roynette, B. & Talay, D. & Vallois, P., 1998. "Nonlinear self-stabilizing processes - I Existence, invariant probability, propagation of chaos," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 173-201, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharrock, Louis & Kantas, Nikolas & Parpas, Panos & Pavliotis, Grigorios A., 2023. "Online parameter estimation for the McKean–Vlasov stochastic differential equation," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 481-546.
    2. Genon-Catalot, Valentine & Larédo, Catherine, 2021. "Probabilistic properties and parametric inference of small variance nonlinear self-stabilizing stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 513-548.
    3. Malrieu, F., 2001. "Logarithmic Sobolev inequalities for some nonlinear PDE's," Stochastic Processes and their Applications, Elsevier, vol. 95(1), pages 109-132, September.
    4. Yulin Song, 2020. "Gradient Estimates and Exponential Ergodicity for Mean-Field SDEs with Jumps," Journal of Theoretical Probability, Springer, vol. 33(1), pages 201-238, March.
    5. Julian Tugaut, 2014. "Self-stabilizing Processes in Multi-wells Landscape in ℝ d -Invariant Probabilities," Journal of Theoretical Probability, Springer, vol. 27(1), pages 57-79, March.
    6. Herrmann, S. & Tugaut, J., 2010. "Non-uniqueness of stationary measures for self-stabilizing processes," Stochastic Processes and their Applications, Elsevier, vol. 120(7), pages 1215-1246, July.
    7. Crucinio, Francesca R. & De Bortoli, Valentin & Doucet, Arnaud & Johansen, Adam M., 2024. "Solving a class of Fredholm integral equations of the first kind via Wasserstein gradient flows," Stochastic Processes and their Applications, Elsevier, vol. 173(C).
    8. E. Löcherbach, 2020. "Convergence to Equilibrium for Time-Inhomogeneous Jump Diffusions with State-Dependent Jump Intensity," Journal of Theoretical Probability, Springer, vol. 33(4), pages 2280-2314, December.
    9. Detering, Nils & Fouque, Jean-Pierre & Ichiba, Tomoyuki, 2020. "Directed chain stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 2519-2551.
    10. Graham, Carl, 2011. "Convergence of multi-class systems of fixed possibly infinite sizes," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 31-35, January.
    11. Dai Pra, Paolo & Formentin, Marco & Pelino, Guglielmo, 2021. "A hierarchical mean field model of interacting spins," Stochastic Processes and their Applications, Elsevier, vol. 140(C), pages 287-338.
    12. Benachour, S. & Roynette, B. & Vallois, P., 1998. "Nonlinear self-stabilizing processes - II: Convergence to invariant probability," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 203-224, July.
    13. Erny, Xavier, 2022. "Well-posedness and propagation of chaos for McKean–Vlasov equations with jumps and locally Lipschitz coefficients," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 192-214.
    14. Benazzoli, Chiara & Campi, Luciano & Di Persio, Luca, 2019. "ε-Nash equilibrium in stochastic differential games with mean-field interaction and controlled jumps," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
    15. Monmarché, Pierre, 2017. "Long-time behaviour and propagation of chaos for mean field kinetic particles," Stochastic Processes and their Applications, Elsevier, vol. 127(6), pages 1721-1737.
    16. Adams, Daniel & dos Reis, Gonçalo & Ravaille, Romain & Salkeld, William & Tugaut, Julian, 2022. "Large Deviations and Exit-times for reflected McKean–Vlasov equations with self-stabilising terms and superlinear drifts," Stochastic Processes and their Applications, Elsevier, vol. 146(C), pages 264-310.
    17. Jun Moon & Wonhee Kim, 2020. "Explicit Characterization of Feedback Nash Equilibria for Indefinite, Linear-Quadratic, Mean-Field-Type Stochastic Zero-Sum Differential Games with Jump-Diffusion Models," Mathematics, MDPI, vol. 8(10), pages 1-23, September.
    18. Benazzoli, Chiara & Campi, Luciano & Di Persio, Luca, 2020. "Mean field games with controlled jump–diffusion dynamics: Existence results and an illiquid interbank market model," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6927-6964.
    19. Bayraktar, Erhan & Wu, Ruoyu, 2021. "Mean field interaction on random graphs with dynamically changing multi-color edges," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 197-244.
    20. Tomoyuki Ichiba & Michael Ludkovski & Andrey Sarantsev, 2019. "Dynamic contagion in a banking system with births and defaults," Annals of Finance, Springer, vol. 15(4), pages 489-538, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:123:y:2013:i:5:p:1780-1801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.