Self-stabilizing Processes in Multi-wells Landscape in ℝ d -Invariant Probabilities
Author
Abstract
Suggested Citation
DOI: 10.1007/s10959-012-0435-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Benachour, S. & Roynette, B. & Vallois, P., 1998. "Nonlinear self-stabilizing processes - II: Convergence to invariant probability," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 203-224, July.
- Herrmann, S. & Tugaut, J., 2010. "Non-uniqueness of stationary measures for self-stabilizing processes," Stochastic Processes and their Applications, Elsevier, vol. 120(7), pages 1215-1246, July.
- Benachour, S. & Roynette, B. & Talay, D. & Vallois, P., 1998. "Nonlinear self-stabilizing processes - I Existence, invariant probability, propagation of chaos," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 173-201, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sharrock, Louis & Kantas, Nikolas & Parpas, Panos & Pavliotis, Grigorios A., 2023. "Online parameter estimation for the McKean–Vlasov stochastic differential equation," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 481-546.
- Genon-Catalot, Valentine & Larédo, Catherine, 2021. "Probabilistic properties and parametric inference of small variance nonlinear self-stabilizing stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 513-548.
- Malrieu, F., 2001. "Logarithmic Sobolev inequalities for some nonlinear PDE's," Stochastic Processes and their Applications, Elsevier, vol. 95(1), pages 109-132, September.
- Tugaut, Julian, 2013. "Self-stabilizing processes in multi-wells landscape in Rd-convergence," Stochastic Processes and their Applications, Elsevier, vol. 123(5), pages 1780-1801.
- Herrmann, S. & Tugaut, J., 2010. "Non-uniqueness of stationary measures for self-stabilizing processes," Stochastic Processes and their Applications, Elsevier, vol. 120(7), pages 1215-1246, July.
- Benachour, S. & Roynette, B. & Vallois, P., 1998. "Nonlinear self-stabilizing processes - II: Convergence to invariant probability," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 203-224, July.
- Adams, Daniel & dos Reis, Gonçalo & Ravaille, Romain & Salkeld, William & Tugaut, Julian, 2022. "Large Deviations and Exit-times for reflected McKean–Vlasov equations with self-stabilising terms and superlinear drifts," Stochastic Processes and their Applications, Elsevier, vol. 146(C), pages 264-310.
- Yulin Song, 2020. "Gradient Estimates and Exponential Ergodicity for Mean-Field SDEs with Jumps," Journal of Theoretical Probability, Springer, vol. 33(1), pages 201-238, March.
- Bashiri, K. & Menz, G., 2021. "Metastability in a continuous mean-field model at low temperature and strong interaction," Stochastic Processes and their Applications, Elsevier, vol. 134(C), pages 132-173.
- Liu, Huoxia & Lin, Judy Yangjun, 2023. "Stochastic McKean–Vlasov equations with Lévy noise: Existence, attractiveness and stability," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
More about this item
Keywords
Self-interacting diffusion; Free-energy; McKean–Vlasov stochastic differential equations; Stationary measures; Uniqueness problem; Granular media equation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:27:y:2014:i:1:d:10.1007_s10959-012-0435-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.