IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v127y2017i12p3870-3912.html
   My bibliography  Save this article

Mean-field limit of generalized Hawkes processes

Author

Listed:
  • Chevallier, Julien

Abstract

We generalize multivariate Hawkes processes mainly by including a dependence with respect to the age of the process, i.e. the delay since the last point.

Suggested Citation

  • Chevallier, Julien, 2017. "Mean-field limit of generalized Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 3870-3912.
  • Handle: RePEc:eee:spapps:v:127:y:2017:i:12:p:3870-3912
    DOI: 10.1016/j.spa.2017.02.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414915300946
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2017.02.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yosihiko Ogata, 1998. "Space-Time Point-Process Models for Earthquake Occurrences," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(2), pages 379-402, June.
    2. Jonathan W. Pillow & Jonathon Shlens & Liam Paninski & Alexander Sher & Alan M. Litke & E. J. Chichilnisky & Eero P. Simoncelli, 2008. "Spatio-temporal correlations and visual signalling in a complete neuronal population," Nature, Nature, vol. 454(7207), pages 995-999, August.
    3. Delarue, F. & Inglis, J. & Rubenthaler, S. & Tanré, E., 2015. "Particle systems with a singular mean-field self-excitation. Application to neuronal networks," Stochastic Processes and their Applications, Elsevier, vol. 125(6), pages 2451-2492.
    4. Gusto Gaelle & Schbath Sophie, 2005. "FADO: A Statistical Method to Detect Favored or Avoided Distances between Occurrences of Motifs using the Hawkes' Model," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-28, September.
    5. Mohler, G. O. & Short, M. B. & Brantingham, P. J. & Schoenberg, F. P. & Tita, G. E., 2011. "Self-Exciting Point Process Modeling of Crime," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 100-108.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duval, Céline & Luçon, Eric & Pouzat, Christophe, 2022. "Interacting Hawkes processes with multiplicative inhibition," Stochastic Processes and their Applications, Elsevier, vol. 148(C), pages 180-226.
    2. Cormier, Quentin & Tanré, Etienne & Veltz, Romain, 2020. "Long time behavior of a mean-field model of interacting neurons," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 2553-2595.
    3. Heesen, Sophie & Stannat, Wilhelm, 2021. "Fluctuation limits for mean-field interacting nonlinear Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 139(C), pages 280-297.
    4. Gao, Xuefeng & Zhu, Lingjiong, 2018. "Limit theorems for Markovian Hawkes processes with a large initial intensity," Stochastic Processes and their Applications, Elsevier, vol. 128(11), pages 3807-3839.
    5. Chevallier, J. & Duarte, A. & Löcherbach, E. & Ost, G., 2019. "Mean field limits for nonlinear spatially extended Hawkes processes with exponential memory kernels," Stochastic Processes and their Applications, Elsevier, vol. 129(1), pages 1-27.
    6. Agathe-Nerine, Zoé, 2022. "Multivariate Hawkes processes on inhomogeneous random graphs," Stochastic Processes and their Applications, Elsevier, vol. 152(C), pages 86-148.
    7. Antonov, A. & Leonidov, A. & Semenov, A., 2021. "Self-excited Ising game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    8. Xuefeng Gao & Lingjiong Zhu, 2018. "Functional central limit theorems for stationary Hawkes processes and application to infinite-server queues," Queueing Systems: Theory and Applications, Springer, vol. 90(1), pages 161-206, October.
    9. Li, Bo & Pang, Guodong, 2022. "Functional limit theorems for nonstationary marked Hawkes processes in the high intensity regime," Stochastic Processes and their Applications, Elsevier, vol. 143(C), pages 285-339.
    10. Gao, Fuqing & Zhu, Lingjiong, 2018. "Some asymptotic results for nonlinear Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 128(12), pages 4051-4077.
    11. Maxime Morariu-Patrichi & Mikko S. Pakkanen, 2017. "Hybrid marked point processes: characterisation, existence and uniqueness," Papers 1707.06970, arXiv.org, revised Oct 2018.
    12. Schmutz, Valentin, 2022. "Mean-field limit of age and leaky memory dependent Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 39-59.
    13. Pfaffelhuber, P. & Rotter, S. & Stiefel, J., 2022. "Mean-field limits for non-linear Hawkes processes with excitation and inhibition," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 57-78.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philip A. White & Alan E. Gelfand, 2021. "Generalized Evolutionary Point Processes: Model Specifications and Model Comparison," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 1001-1021, September.
    2. Dewei Wang & Chendi Jiang & Chanseok Park, 2019. "Reliability analysis of load-sharing systems with memory," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 341-360, April.
    3. Chenlong Li & Zhanjie Song & Wenjun Wang, 2020. "Space–time inhomogeneous background intensity estimators for semi-parametric space–time self-exciting point process models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 945-967, August.
    4. Sebastian Meyer & Johannes Elias & Michael Höhle, 2012. "A Space–Time Conditional Intensity Model for Invasive Meningococcal Disease Occurrence," Biometrics, The International Biometric Society, vol. 68(2), pages 607-616, June.
    5. Eric W. Fox & Martin B. Short & Frederic P. Schoenberg & Kathryn D. Coronges & Andrea L. Bertozzi, 2016. "Modeling E-mail Networks and Inferring Leadership Using Self-Exciting Point Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 564-584, April.
    6. Lizhen Xu & Jason A. Duan & Andrew Whinston, 2014. "Path to Purchase: A Mutually Exciting Point Process Model for Online Advertising and Conversion," Management Science, INFORMS, vol. 60(6), pages 1392-1412, June.
    7. Frederic Paik Schoenberg & Marc Hoffmann & Ryan J. Harrigan, 2019. "A recursive point process model for infectious diseases," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1271-1287, October.
    8. Naveed Chehrazi & Thomas A. Weber, 2015. "Dynamic Valuation of Delinquent Credit-Card Accounts," Management Science, INFORMS, vol. 61(12), pages 3077-3096, December.
    9. Giada Adelfio & Marcello Chiodi, 2021. "Including covariates in a space-time point process with application to seismicity," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 947-971, September.
    10. Gresnigt, Francine & Kole, Erik & Franses, Philip Hans, 2015. "Interpreting financial market crashes as earthquakes: A new Early Warning System for medium term crashes," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 123-139.
    11. Nishio, Kazuki & Hoshino, Takahiro, 2022. "Joint modeling of effects of customer tier program on customer purchase duration and purchase amount," Journal of Retailing and Consumer Services, Elsevier, vol. 66(C).
    12. Jakob Gulddahl Rasmussen, 2013. "Bayesian Inference for Hawkes Processes," Methodology and Computing in Applied Probability, Springer, vol. 15(3), pages 623-642, September.
    13. Baichuan Yuan & Frederic P. Schoenberg & Andrea L. Bertozzi, 2021. "Fast estimation of multivariate spatiotemporal Hawkes processes and network reconstruction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(6), pages 1127-1152, December.
    14. Stindl, Tom & Chen, Feng, 2018. "Likelihood based inference for the multivariate renewal Hawkes process," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 131-145.
    15. D. Gospodinov & V. Karakostas & E. Papadimitriou, 2015. "Seismicity rate modeling for prospective stochastic forecasting: the case of 2014 Kefalonia, Greece, seismic excitation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1039-1058, November.
    16. Emmanuel Bacry & Jean-Francois Muzy, 2014. "Second order statistics characterization of Hawkes processes and non-parametric estimation," Papers 1401.0903, arXiv.org, revised Feb 2015.
    17. Huang, Lorick & Khabou, Mahmoud, 2023. "Nonlinear Poisson autoregression and nonlinear Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 201-241.
    18. Arne F Meyer & Jan-Philipp Diepenbrock & Max F K Happel & Frank W Ohl & Jörn Anemüller, 2014. "Discriminative Learning of Receptive Fields from Responses to Non-Gaussian Stimulus Ensembles," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-15, April.
    19. Anatoliy Swishchuk & Aiden Huffman, 2020. "General Compound Hawkes Processes in Limit Order Books," Risks, MDPI, vol. 8(1), pages 1-25, March.
    20. Steffen Volkenand & Günther Filler & Martin Odening, 2020. "Price Discovery and Market Reflexivity in Agricultural Futures Contracts with Different Maturities," Risks, MDPI, vol. 8(3), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:127:y:2017:i:12:p:3870-3912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.