IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v561y2021ics0378437120306889.html
   My bibliography  Save this article

Self-excited Ising game

Author

Listed:
  • Antonov, A.
  • Leonidov, A.
  • Semenov, A.

Abstract

Effects of dynamical activity spillover in a noisy binary choice game (Ising game) on a complete graph are studied. Binary choice games are very important for both economics and statistical physics playing a role of the bridge between these two fields. In this paper we investigate the effects of self-excited activity induced by activity spillover on relaxation to equilibria and transitions between metastable equilibria at finite times. Using the formalism of master equations we show that both relaxation and interequilibria transitions at finite time are accelerated by the effects of activity spillover.

Suggested Citation

  • Antonov, A. & Leonidov, A. & Semenov, A., 2021. "Self-excited Ising game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
  • Handle: RePEc:eee:phsmap:v:561:y:2021:i:c:s0378437120306889
    DOI: 10.1016/j.physa.2020.125305
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120306889
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125305?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephen J. Hardiman & Nicolas Bercot & Jean-Philippe Bouchaud, 2013. "Critical reflexivity in financial markets: a Hawkes process analysis," Papers 1302.1405, arXiv.org, revised Jun 2013.
    2. Hainaut, Donatien, 2020. "Fractional Hawkes processes," LIDAM Reprints ISBA 2020009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Stephen Hardiman & Nicolas Bercot & Jean-Philippe Bouchaud, 2013. "Critical reflexivity in financial markets: a Hawkes process analysis," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 86(10), pages 1-9, October.
    4. Chevallier, Julien, 2017. "Mean-field limit of generalized Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 3870-3912.
    5. Hainaut, Donatien, 2020. "Fractional Hawkes processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    6. Lawrence Blume & Steven Durlauf, 2003. "Equilibrium Concepts for Social Interaction Models," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 193-209.
    7. V. Filimonov & D. Sornette, 2015. "Apparent criticality and calibration issues in the Hawkes self-excited point process model: application to high-frequency financial data," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1293-1314, August.
    8. Jacob K. Goeree & Charles A. Holt & Thomas R. Palfrey, 2016. "Quantal Response Equilibrium:A Stochastic Theory of Games," Economics Books, Princeton University Press, edition 1, number 10743.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dupret, Jean-Loup & Hainaut, Donatien, 2023. "A fractional Hawkes process for illiquidity modeling," LIDAM Discussion Papers ISBA 2023001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Swishchuk, Anatoliy & Zagst, Rudi & Zeller, Gabriela, 2021. "Hawkes processes in insurance: Risk model, application to empirical data and optimal investment," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 107-124.
    3. Omar Euch & Masaaki Fukasawa & Mathieu Rosenbaum, 2018. "The microstructural foundations of leverage effect and rough volatility," Finance and Stochastics, Springer, vol. 22(2), pages 241-280, April.
    4. Wheatley, Spencer & Filimonov, Vladimir & Sornette, Didier, 2016. "The Hawkes process with renewal immigration & its estimation with an EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 120-135.
    5. El Euch Omar & Fukasawa Masaaki & Rosenbaum Mathieu, 2016. "The microstructural foundations of leverage effect and rough volatility," Papers 1609.05177, arXiv.org.
    6. Mathieu Rosenbaum & Jianfei Zhang, 2022. "On the universality of the volatility formation process: when machine learning and rough volatility agree," Papers 2206.14114, arXiv.org.
    7. Paul Jusselin & Mathieu Rosenbaum, 2020. "No‐arbitrage implies power‐law market impact and rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1309-1336, October.
    8. Marcello Rambaldi & Emmanuel Bacry & Fabrizio Lillo, 2016. "The role of volume in order book dynamics: a multivariate Hawkes process analysis," Papers 1602.07663, arXiv.org.
    9. Hai-Chuan Xu & Wei-Xing Zhou, 2020. "Modeling aggressive market order placements with Hawkes factor models," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-12, January.
    10. Pierre Blanc & Jonathan Donier & Jean-Philippe Bouchaud, 2015. "Quadratic Hawkes processes for financial prices," Papers 1509.07710, arXiv.org.
    11. Kyungsub Lee, 2023. "Multi-kernel property in high-frequency price dynamics under Hawkes model," Papers 2302.11822, arXiv.org.
    12. Carlo Campajola & Domenico Di Gangi & Fabrizio Lillo & Daniele Tantari, 2020. "Modelling time-varying interactions in complex systems: the Score Driven Kinetic Ising Model," Papers 2007.15545, arXiv.org, revised Aug 2021.
    13. Maxime Morariu-Patrichi & Mikko S. Pakkanen, 2017. "Hybrid marked point processes: characterisation, existence and uniqueness," Papers 1707.06970, arXiv.org, revised Oct 2018.
    14. Marcello Rambaldi & Vladimir Filimonov & Fabrizio Lillo, 2016. "Detection of intensity bursts using Hawkes processes: an application to high frequency financial data," Papers 1610.05383, arXiv.org.
    15. Paul Jusselin & Mathieu Rosenbaum, 2018. "No-arbitrage implies power-law market impact and rough volatility," Papers 1805.07134, arXiv.org.
    16. Marcello Rambaldi & Emmanuel Bacry & Jean-Franc{c}ois Muzy, 2018. "Disentangling and quantifying market participant volatility contributions," Papers 1807.07036, arXiv.org.
    17. Thibault Jaisson, 2014. "Market impact as anticipation of the order flow imbalance," Papers 1402.1288, arXiv.org.
    18. Thibault Jaisson & Mathieu Rosenbaum, 2015. "Rough fractional diffusions as scaling limits of nearly unstable heavy tailed Hawkes processes," Papers 1504.03100, arXiv.org.
    19. Hainaut, Donatien, 2021. "A fractional multi-states model for insurance," LIDAM Discussion Papers ISBA 2021019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Lucio Maria Calcagnile & Giacomo Bormetti & Michele Treccani & Stefano Marmi & Fabrizio Lillo, 2015. "Collective synchronization and high frequency systemic instabilities in financial markets," Papers 1505.00704, arXiv.org.

    More about this item

    Keywords

    Ising game; Activity spillover;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:561:y:2021:i:c:s0378437120306889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.