IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v25y2019i2d10.1007_s10985-018-9425-8.html
   My bibliography  Save this article

Reliability analysis of load-sharing systems with memory

Author

Listed:
  • Dewei Wang

    (University of South Carolina)

  • Chendi Jiang

    (University of South Carolina)

  • Chanseok Park

    (Pusan National University)

Abstract

The load-sharing model has been studied since the early 1940s to account for the stochastic dependence of components in a parallel system. It assumes that, as components fail one by one, the total workload applied to the system is shared by the remaining components and thus affects their performance. Such dependent systems have been studied in many engineering applications which include but are not limited to fiber composites, manufacturing, power plants, workload analysis of computing, software and hardware reliability, etc. Many statistical models have been proposed to analyze the impact of each redistribution of the workload; i.e., the changes on the hazard rate of each remaining component. However, they do not consider how long a surviving component has worked for prior to the redistribution. We name such load-sharing models as memoryless. To remedy this potential limitation, we propose a general framework for load-sharing models that account for the work history. Through simulation studies, we show that an inappropriate use of the memoryless assumption could lead to inaccurate inference on the impact of redistribution. Further, a real-data example of plasma display devices is analyzed to illustrate our methods.

Suggested Citation

  • Dewei Wang & Chendi Jiang & Chanseok Park, 2019. "Reliability analysis of load-sharing systems with memory," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 341-360, April.
  • Handle: RePEc:spr:lifeda:v:25:y:2019:i:2:d:10.1007_s10985-018-9425-8
    DOI: 10.1007/s10985-018-9425-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-018-9425-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-018-9425-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yosihiko Ogata, 1998. "Space-Time Point-Process Models for Earthquake Occurrences," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(2), pages 379-402, June.
    2. Mohler, G. O. & Short, M. B. & Brantingham, P. J. & Schoenberg, F. P. & Tita, G. E., 2011. "Self-Exciting Point Process Modeling of Crime," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 100-108.
    3. Paul H. Kvam & Edsel A. Pena, 2005. "Estimating Load-Sharing Properties in a Dynamic Reliability System," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 262-272, March.
    4. José Da Fonseca & Riadh Zaatour, 2014. "Hawkes Process: Fast Calibration, Application to Trade Clustering, and Diffusive Limit," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(6), pages 548-579, June.
    5. Chanseok Park, 2010. "Parameter estimation for the reliability of load-sharing systems," IISE Transactions, Taylor & Francis Journals, vol. 42(10), pages 753-765.
    6. Aït-Sahalia, Yacine & Cacho-Diaz, Julio & Laeven, Roger J.A., 2015. "Modeling financial contagion using mutually exciting jump processes," Journal of Financial Economics, Elsevier, vol. 117(3), pages 585-606.
    7. Singh, Bhupendra & Sharma, K.K. & Kumar, Anuj, 2008. "A classical and Bayesian estimation of a k-components load-sharing parallel system," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5175-5185, August.
    8. Chanseok Park, 2013. "Parameter estimation from load-sharing system data using the expectation–maximization algorithm," IISE Transactions, Taylor & Francis Journals, vol. 45(2), pages 147-163.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin, Shuidan & Wang, Bing Xing & Tsai, Tzong-Ru & Wang, Xiaofei, 2023. "The prediction of remaining useful lifetime for the Weibull k-out-of-n load-sharing system," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    2. Azeem Ali & Sanku Dey & Haseeb Ur Rehman & Zeeshan Ali, 2019. "On Bayesian reliability estimation of a 1-out-of-k load sharing system model of modified Burr-III distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1052-1081, October.
    3. Brown, Bodunrin & Liu, Bin & McIntyre, Stuart & Revie, Matthew, 2022. "Reliability analysis of load-sharing systems with spatial dependence and proximity effects," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    4. Franco, Manuel & Vivo, Juana-Maria & Kundu, Debasis, 2020. "A generalized Freund bivariate model for a two-component load sharing system," Reliability Engineering and System Safety, Elsevier, vol. 203(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neha Choudhary & Abhishek Tyagi & Bhupendra Singh, 2022. "Analysing Load-Sharing System Model with Type-I and Type-II Failure Censored Data from Weibull Distribution," Annals of Data Science, Springer, vol. 9(4), pages 645-674, August.
    2. Azeem Ali & Sanku Dey & Haseeb Ur Rehman & Zeeshan Ali, 2019. "On Bayesian reliability estimation of a 1-out-of-k load sharing system model of modified Burr-III distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1052-1081, October.
    3. Pramendra Singh Pundir & Puneet Kumar Gupta, 2018. "Reliability Estimation in Load-Sharing System Model with Application to Real Data," Annals of Data Science, Springer, vol. 5(1), pages 69-91, March.
    4. Singh, Bhupendra & Gupta, Puneet Kumar, 2012. "Load-sharing system model and its application to the real data set," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(9), pages 1615-1629.
    5. Zhengcheng Zhang & Yonghong Yang & Danqing Li, 2022. "Estimation of parameters for load-sharing parallel systems under exponential Pareto distribution," Journal of Risk and Reliability, , vol. 236(2), pages 248-255, April.
    6. Brown, Bodunrin & Liu, Bin & McIntyre, Stuart & Revie, Matthew, 2022. "Reliability analysis of load-sharing systems with spatial dependence and proximity effects," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    7. Levitin, Gregory & Xing, Liudong & Ben-Haim, Hanoch & Dai, Yuanshun, 2016. "Optimal task partition and state-dependent loading in heterogeneous two-element work sharing system," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 97-108.
    8. Bo Jing & Shenghong Li & Yong Ma, 2020. "Pricing VIX options with volatility clustering," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(6), pages 928-944, June.
    9. Huang, Lorick & Khabou, Mahmoud, 2023. "Nonlinear Poisson autoregression and nonlinear Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 201-241.
    10. Anatoliy Swishchuk & Aiden Huffman, 2020. "General Compound Hawkes Processes in Limit Order Books," Risks, MDPI, vol. 8(1), pages 1-25, March.
    11. Cavaliere, Giuseppe & Lu, Ye & Rahbek, Anders & Stærk-Østergaard, Jacob, 2023. "Bootstrap inference for Hawkes and general point processes," Journal of Econometrics, Elsevier, vol. 235(1), pages 133-165.
    12. Boswijk, H. Peter & Laeven, Roger J.A. & Yang, Xiye, 2018. "Testing for self-excitation in jumps," Journal of Econometrics, Elsevier, vol. 203(2), pages 256-266.
    13. Qin, Shuidan & Wang, Bing Xing & Tsai, Tzong-Ru & Wang, Xiaofei, 2023. "The prediction of remaining useful lifetime for the Weibull k-out-of-n load-sharing system," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    14. Chenlong Li & Zhanjie Song & Wenjun Wang, 2020. "Space–time inhomogeneous background intensity estimators for semi-parametric space–time self-exciting point process models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 945-967, August.
    15. Sebastian Meyer & Johannes Elias & Michael Höhle, 2012. "A Space–Time Conditional Intensity Model for Invasive Meningococcal Disease Occurrence," Biometrics, The International Biometric Society, vol. 68(2), pages 607-616, June.
    16. Mercuri, Lorenzo & Perchiazzo, Andrea & Rroji, Edit, 2024. "A Hawkes model with CARMA(p,q) intensity," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 1-26.
    17. Ulrich Horst & Wei Xu, 2024. "Functional Limit Theorems for Hawkes Processes," Papers 2401.11495, arXiv.org, revised Nov 2024.
    18. Eric W. Fox & Martin B. Short & Frederic P. Schoenberg & Kathryn D. Coronges & Andrea L. Bertozzi, 2016. "Modeling E-mail Networks and Inferring Leadership Using Self-Exciting Point Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 564-584, April.
    19. Lizhen Xu & Jason A. Duan & Andrew Whinston, 2014. "Path to Purchase: A Mutually Exciting Point Process Model for Online Advertising and Conversion," Management Science, INFORMS, vol. 60(6), pages 1392-1412, June.
    20. Francine Gresnigt & Erik Kole & Philip Hans Franses, 2017. "Exploiting Spillovers to Forecast Crashes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(8), pages 936-955, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:25:y:2019:i:2:d:10.1007_s10985-018-9425-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.