IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v123y2018icp131-145.html
   My bibliography  Save this article

Likelihood based inference for the multivariate renewal Hawkes process

Author

Listed:
  • Stindl, Tom
  • Chen, Feng

Abstract

The recent introduction of the renewal Hawkes (RHawkes) process has extended the modeling capabilities of the classical Hawkes self-exciting process by allowing the immigrant arrival times to follow a general renewal process rather than a homogeneous Poisson process. A multivariate extension to the RHawkes process will be proposed, which allows different event types to interact with self- and cross-excitation effects, termed the multivariate renewal Hawkes (MRHawkes) process model. A recursive algorithm is developed to directly compute the likelihood of the model, which forms the basis of statistical inference. A modified algorithm for likelihood evaluation is also proposed which reduces computational time. The likelihood evaluation algorithm also implies a procedure to assess the goodness-of-fit of the temporal patterns of the events and distribution of the event types by computing independent and uniform residuals. The plug-in predictive density function for the next event time and methods to make future predictions using simulations are presented. Simulation studies will show that the likelihood evaluation algorithms and the prediction procedures are performing as expected. To illustrate the proposed methodology, data on earthquakes arising in two Pacific island countries Fiji and Vanuatu and trade-through data for the stock BNP Paribas on the Euronext Paris stock exchange are analyzed.

Suggested Citation

  • Stindl, Tom & Chen, Feng, 2018. "Likelihood based inference for the multivariate renewal Hawkes process," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 131-145.
  • Handle: RePEc:eee:csdana:v:123:y:2018:i:c:p:131-145
    DOI: 10.1016/j.csda.2018.01.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947318300306
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2018.01.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fabrizio Pomponio & Frédéric Abergel, 2013. "Multiple-limit trades : empirical facts and application to lead-lag measures," Post-Print hal-00745317, HAL.
    2. Bacry, E. & Delattre, S. & Hoffmann, M. & Muzy, J.F., 2013. "Some limit theorems for Hawkes processes and application to financial statistics," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2475-2499.
    3. Yosihiko Ogata, 1998. "Space-Time Point-Process Models for Earthquake Occurrences," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(2), pages 379-402, June.
    4. Bowsher, Clive G., 2007. "Modelling security market events in continuous time: Intensity based, multivariate point process models," Journal of Econometrics, Elsevier, vol. 141(2), pages 876-912, December.
    5. Mohler, G. O. & Short, M. B. & Brantingham, P. J. & Schoenberg, F. P. & Tita, G. E., 2011. "Self-Exciting Point Process Modeling of Crime," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 100-108.
    6. Roueff, François & von Sachs, Rainer & Sansonnet, Laure, 2016. "Locally stationary Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 126(6), pages 1710-1743.
    7. Toke, Ioane Muni & Pomponio, Fabrizio, 2011. "Modelling trades-through in a limited order book using Hawkes processes," Economics Discussion Papers 2011-32, Kiel Institute for the World Economy (IfW Kiel).
    8. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    9. Roueff, Francois & von Sachs, Rainer & Sansonnet, Laure, 2016. "Locally stationary Hawkes processes," LIDAM Reprints ISBA 2016026, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Wheatley, Spencer & Filimonov, Vladimir & Sornette, Didier, 2016. "The Hawkes process with renewal immigration & its estimation with an EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 120-135.
    11. Emmanuel Bacry & Sylvain Delattre & Marc Hoffmann & Jean-François Muzy, 2013. "Some limit theorems for Hawkes processes and application to financial statistics," Post-Print hal-01313994, HAL.
    12. Brockwell, A.E., 2007. "Universal residuals: A multivariate transformation," Statistics & Probability Letters, Elsevier, vol. 77(14), pages 1473-1478, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hees, Katharina & Nayak, Smarak & Straka, Peter, 2021. "Statistical inference for inter-arrival times of extreme events in bursty time series," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    2. Fabio Vanni & David Lambert, 2023. "A detection analysis for temporal memory patterns at different time-scales," Papers 2309.12034, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Clinet & Yoann Potiron, 2016. "Statistical inference for the doubly stochastic self-exciting process," Papers 1607.05831, arXiv.org, revised Jun 2017.
    2. Fuentes, Fernanda & Herrera, Rodrigo & Clements, Adam, 2018. "Modeling extreme risks in commodities and commodity currencies," Pacific-Basin Finance Journal, Elsevier, vol. 51(C), pages 108-120.
    3. Thibault Jaisson & Mathieu Rosenbaum, 2015. "Rough fractional diffusions as scaling limits of nearly unstable heavy tailed Hawkes processes," Papers 1504.03100, arXiv.org.
    4. Gresnigt, Francine & Kole, Erik & Franses, Philip Hans, 2015. "Interpreting financial market crashes as earthquakes: A new Early Warning System for medium term crashes," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 123-139.
    5. Chen, Zezhun & Dassios, Angelos, 2022. "Cluster point processes and Poisson thinning INARMA," LSE Research Online Documents on Economics 113652, London School of Economics and Political Science, LSE Library.
    6. Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592, arXiv.org, revised May 2015.
    7. Anatoliy Swishchuk & Aiden Huffman, 2020. "General Compound Hawkes Processes in Limit Order Books," Risks, MDPI, vol. 8(1), pages 1-25, March.
    8. Steffen Volkenand & Günther Filler & Martin Odening, 2020. "Price Discovery and Market Reflexivity in Agricultural Futures Contracts with Different Maturities," Risks, MDPI, vol. 8(3), pages 1-17, July.
    9. Cavaliere, Giuseppe & Lu, Ye & Rahbek, Anders & Stærk-Østergaard, Jacob, 2023. "Bootstrap inference for Hawkes and general point processes," Journal of Econometrics, Elsevier, vol. 235(1), pages 133-165.
    10. repec:hal:wpaper:hal-00777941 is not listed on IDEAS
    11. Omar Euch & Masaaki Fukasawa & Mathieu Rosenbaum, 2018. "The microstructural foundations of leverage effect and rough volatility," Finance and Stochastics, Springer, vol. 22(2), pages 241-280, April.
    12. Lizhen Xu & Jason A. Duan & Andrew Whinston, 2014. "Path to Purchase: A Mutually Exciting Point Process Model for Online Advertising and Conversion," Management Science, INFORMS, vol. 60(6), pages 1392-1412, June.
    13. Roueff, Francois & von Sachs, Rainer & Sansonnet, Laure, 2015. "Time-frequency analysis of locally stationary Hawkes processes," LIDAM Discussion Papers ISBA 2015011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Anatoliy Swishchuk & Bruno Remillard & Robert Elliott & Jonathan Chavez-Casillas, 2017. "Compound Hawkes Processes in Limit Order Books," Papers 1712.03106, arXiv.org.
    15. El Euch Omar & Fukasawa Masaaki & Rosenbaum Mathieu, 2016. "The microstructural foundations of leverage effect and rough volatility," Papers 1609.05177, arXiv.org.
    16. Ban Zheng & Franc{c}ois Roueff & Fr'ed'eric Abergel, 2013. "Ergodicity and scaling limit of a constrained multivariate Hawkes process," Papers 1301.5007, arXiv.org, revised Feb 2014.
    17. Liu, Chenguang, 2020. "Statistical inference for a partially observed interacting system of Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5636-5694.
    18. Hainaut, Donatien, 2021. "Moment generating function of non-Markov self-excited claims processes," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 406-424.
    19. Chen, Zezhun & Dassios, Angelos & Kuan, Valerie & Lim, Jia Wei & Qu, Yan & Surya, Budhi & Zhao, Hongbiao, 2021. "A two-phase dynamic contagion model for COVID-19," LSE Research Online Documents on Economics 105064, London School of Economics and Political Science, LSE Library.
    20. Ulrich Horst & Wei Xu & Rouyi Zhang, 2023. "Convergence of Heavy-Tailed Hawkes Processes and the Microstructure of Rough Volatility," Papers 2312.08784, arXiv.org, revised Nov 2024.
    21. Thibault Jaisson, 2015. "Market impact as anticipation of the order flow imbalance," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1123-1135, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:123:y:2018:i:c:p:131-145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.