IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v71y2019i5d10.1007_s10463-018-0690-9.html
   My bibliography  Save this article

A recursive point process model for infectious diseases

Author

Listed:
  • Frederic Paik Schoenberg

    (University of California)

  • Marc Hoffmann

    (PSL Research University, Université Paris-Dauphine)

  • Ryan J. Harrigan

    (University of California)

Abstract

We introduce a new type of point process model to describe the incidence of contagious diseases. The model incorporates the premise that when a disease occurs at low frequency in the population, such as in the primary stages of an outbreak, then anyone with the disease is likely to have a high rate of transmission to others, whereas when the disease is prevalent, the transmission rate is lower due to prevention measures and a relatively high percentage of previous exposure in the population. The model is said to be recursive, in the sense that the conditional intensity at any time depends on the productivity associated with previous points, and this productivity in turn depends on the conditional intensity at those points. Basic properties of the model are derived, estimation and simulation are discussed, and the recursive model is shown to fit well to California Rocky Mountain Spotted Fever data.

Suggested Citation

  • Frederic Paik Schoenberg & Marc Hoffmann & Ryan J. Harrigan, 2019. "A recursive point process model for infectious diseases," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1271-1287, October.
  • Handle: RePEc:spr:aistmt:v:71:y:2019:i:5:d:10.1007_s10463-018-0690-9
    DOI: 10.1007/s10463-018-0690-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-018-0690-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-018-0690-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592, arXiv.org, revised May 2015.
    2. Yosihiko Ogata & Koichi Katsura & Masaharu Tanemura, 2003. "Modelling heterogeneous space–time occurrences of earthquakes and its residual analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(4), pages 499-509, October.
    3. Yosihiko Ogata, 1998. "Space-Time Point-Process Models for Earthquake Occurrences," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(2), pages 379-402, June.
    4. E. Bacry & S. Delattre & M. Hoffmann & J. F. Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 65-77, January.
    5. Kate E. Jones & Nikkita G. Patel & Marc A. Levy & Adam Storeygard & Deborah Balk & John L. Gittleman & Peter Daszak, 2008. "Global trends in emerging infectious diseases," Nature, Nature, vol. 451(7181), pages 990-993, February.
    6. Mohler, G. O. & Short, M. B. & Brantingham, P. J. & Schoenberg, F. P. & Tita, G. E., 2011. "Self-Exciting Point Process Modeling of Crime," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 100-108.
    7. Earvin Balderama & Frederic Paik Schoenberg & Erin Murray & Philip W. Rundel, 2012. "Application of Branching Models in the Study of Invasive Species," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 467-476, June.
    8. Frederic Schoenberg, 2006. "On Non-simple Marked Point Processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(2), pages 223-233, June.
    9. P. A. W Lewis & G. S. Shedler, 1979. "Simulation of nonhomogeneous poisson processes by thinning," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 26(3), pages 403-413, September.
    10. Harte, David, 2010. "PtProcess: An R Package for Modelling Marked Point Processes Indexed by Time," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 35(i08).
    11. Emmanuel Bacry & Sylvain Delattre & Marc Hoffmann & Jean-François Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Post-Print hal-01313995, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sarita D. Lee & Andy A. Shen & Junhyung Park & Ryan J. Harrigan & Nicole A. Hoff & Anne W. Rimoin & Frederic Paik Schoenberg, 2022. "Comparison of prospective Hawkes and recursive point process models for Ebola in DRC," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 201-210, January.
    2. Frederic Paik Schoenberg, 2022. "Nonparametric estimation of variable productivity Hawkes processes," Environmetrics, John Wiley & Sons, Ltd., vol. 33(6), September.
    3. Racek, Daniel & Thurner, Paul & Kauermann, Goeran, 2024. "Integrating Spatio-temporal Diffusion into Statistical Forecasting Models of Armed Conflict via Non-parametric Smoothing," OSF Preprints q59dr, Center for Open Science.
    4. Grames, Eliza M. & Stepule, Piper L. & Herrick, Susan Z. & Ranelli, Benjamin T. & Elphick, Chris S., 2022. "Separating acoustic signal into underlying behaviors with self-exciting point process models," Ecological Modelling, Elsevier, vol. 468(C).
    5. Kieran Kalair & Colm Connaughton & Pierfrancesco Alaimo Di Loro, 2021. "A non‐parametric Hawkes process model of primary and secondary accidents on a UK smart motorway," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 80-97, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baichuan Yuan & Frederic P. Schoenberg & Andrea L. Bertozzi, 2021. "Fast estimation of multivariate spatiotemporal Hawkes processes and network reconstruction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(6), pages 1127-1152, December.
    2. Swishchuk, Anatoliy & Zagst, Rudi & Zeller, Gabriela, 2021. "Hawkes processes in insurance: Risk model, application to empirical data and optimal investment," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 107-124.
    3. Angelos Dassios & Hongbiao Zhao, 2017. "A Generalized Contagion Process With An Application To Credit Risk," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-33, February.
    4. Dassios, Angelos & Zhao, Hongbiao, 2017. "A generalised contagion process with an application to credit risk," LSE Research Online Documents on Economics 68558, London School of Economics and Political Science, LSE Library.
    5. Chen, Zezhun & Dassios, Angelos, 2022. "Cluster point processes and Poisson thinning INARMA," LSE Research Online Documents on Economics 113652, London School of Economics and Political Science, LSE Library.
    6. Maxime Morariu-Patrichi & Mikko S. Pakkanen, 2017. "Hybrid marked point processes: characterisation, existence and uniqueness," Papers 1707.06970, arXiv.org, revised Oct 2018.
    7. Emmanuel Bacry & Jean-Francois Muzy, 2014. "Second order statistics characterization of Hawkes processes and non-parametric estimation," Papers 1401.0903, arXiv.org, revised Feb 2015.
    8. Marcello Rambaldi & Emmanuel Bacry & Jean-Franc{c}ois Muzy, 2018. "Disentangling and quantifying market participant volatility contributions," Papers 1807.07036, arXiv.org.
    9. Kyungsub Lee, 2022. "Application of Hawkes volatility in the observation of filtered high-frequency price process in tick structures," Papers 2207.05939, arXiv.org, revised Sep 2024.
    10. Huang, Lorick & Khabou, Mahmoud, 2023. "Nonlinear Poisson autoregression and nonlinear Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 201-241.
    11. Guanxing Fu & Ulrich Horst & Xiaonyu Xia, 2022. "Portfolio liquidation games with self‐exciting order flow," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 1020-1065, October.
    12. Chenlong Li & Zhanjie Song & Wenjun Wang, 2020. "Space–time inhomogeneous background intensity estimators for semi-parametric space–time self-exciting point process models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 945-967, August.
    13. Mercuri, Lorenzo & Perchiazzo, Andrea & Rroji, Edit, 2024. "A Hawkes model with CARMA(p,q) intensity," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 1-26.
    14. Thibault Jaisson & Mathieu Rosenbaum, 2015. "Rough fractional diffusions as scaling limits of nearly unstable heavy tailed Hawkes processes," Papers 1504.03100, arXiv.org.
    15. Lucio Maria Calcagnile & Giacomo Bormetti & Michele Treccani & Stefano Marmi & Fabrizio Lillo, 2015. "Collective synchronization and high frequency systemic instabilities in financial markets," Papers 1505.00704, arXiv.org.
    16. Xiaofei Lu & Frédéric Abergel, 2017. "Limit order book modelling with high dimensional Hawkes processes," Working Papers hal-01512430, HAL.
    17. Omar Euch & Masaaki Fukasawa & Mathieu Rosenbaum, 2018. "The microstructural foundations of leverage effect and rough volatility," Finance and Stochastics, Springer, vol. 22(2), pages 241-280, April.
    18. Anatoliy Swishchuk & Aiden Huffman, 2018. "General Compound Hawkes Processes in Limit Order Books," Papers 1812.02298, arXiv.org.
    19. Thomas Deschatre & Pierre Gruet, 2021. "Electricity intraday price modeling with marked Hawkes processes," Papers 2103.07407, arXiv.org, revised Mar 2021.
    20. Guanxing Fu & Ulrich Horst & Xiaonyu Xia, 2020. "Portfolio Liquidation Games with Self-Exciting Order Flow," Papers 2011.05589, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:71:y:2019:i:5:d:10.1007_s10463-018-0690-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.