IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v72y2020i4d10.1007_s10463-019-00715-5.html
   My bibliography  Save this article

Space–time inhomogeneous background intensity estimators for semi-parametric space–time self-exciting point process models

Author

Listed:
  • Chenlong Li

    (Tianjin University
    Wilfrid Laurier University)

  • Zhanjie Song

    (Tianjin University
    Tianjin University)

  • Wenjun Wang

    (Tianjin University)

Abstract

Histogram maximum likelihood estimators of semi-parametric space–time self-exciting point process models via expectation–maximization algorithm can be biased when the background process is inhomogeneous. We explore an alternative estimation method based on the variable bandwidth kernel density estimation (KDE) and EM algorithm. The proposed estimation method involves expanding the semi-parametric models by incorporating an inhomogeneous background process in space and time and applying the variable bandwidth KDE to estimate the background intensity function. Using an example, we show how the variable bandwidth KDE can be estimated this way. Two simulation examples based on residual analysis are designed to evaluate and validate the ability of our methods to recover the background intensity function and parametric triggering intensity function.

Suggested Citation

  • Chenlong Li & Zhanjie Song & Wenjun Wang, 2020. "Space–time inhomogeneous background intensity estimators for semi-parametric space–time self-exciting point process models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 945-967, August.
  • Handle: RePEc:spr:aistmt:v:72:y:2020:i:4:d:10.1007_s10463-019-00715-5
    DOI: 10.1007/s10463-019-00715-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-019-00715-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-019-00715-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vere-Jones, David, 1995. "Forecasting earthquakes and earthquake risk," International Journal of Forecasting, Elsevier, vol. 11(4), pages 503-538, December.
    2. Robert Alan Clements & Frederic Paik Schoenberg & Alejandro Veen, 2012. "Evaluation of space–time point process models using super‐thinning," Environmetrics, John Wiley & Sons, Ltd., vol. 23(7), pages 606-616, November.
    3. Yosihiko Ogata & Koichi Katsura & Masaharu Tanemura, 2003. "Modelling heterogeneous space–time occurrences of earthquakes and its residual analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(4), pages 499-509, October.
    4. Yosihiko Ogata, 1998. "Space-Time Point-Process Models for Earthquake Occurrences," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(2), pages 379-402, June.
    5. Veen, Alejandro & Schoenberg, Frederic P., 2008. "Estimation of SpaceTime Branching Process Models in Seismology Using an EMType Algorithm," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 614-624, June.
    6. Schoenberg F.P., 2003. "Multidimensional Residual Analysis of Point Process Models for Earthquake Occurrences," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 789-795, January.
    7. Mohler, G. O. & Short, M. B. & Brantingham, P. J. & Schoenberg, F. P. & Tita, G. E., 2011. "Self-Exciting Point Process Modeling of Crime," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 100-108.
    8. Zhuang J. & Ogata Y. & Vere-Jones D., 2002. "Stochastic Declustering of Space-Time Earthquake Occurrences," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 369-380, June.
    9. Eric W. Fox & Martin B. Short & Frederic P. Schoenberg & Kathryn D. Coronges & Andrea L. Bertozzi, 2016. "Modeling E-mail Networks and Inferring Leadership Using Self-Exciting Point Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 564-584, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baichuan Yuan & Frederic P. Schoenberg & Andrea L. Bertozzi, 2021. "Fast estimation of multivariate spatiotemporal Hawkes processes and network reconstruction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(6), pages 1127-1152, December.
    2. Giada Adelfio & Marcello Chiodi, 2021. "Including covariates in a space-time point process with application to seismicity," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 947-971, September.
    3. Gresnigt, Francine & Kole, Erik & Franses, Philip Hans, 2015. "Interpreting financial market crashes as earthquakes: A new Early Warning System for medium term crashes," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 123-139.
    4. Eric W. Fox & Martin B. Short & Frederic P. Schoenberg & Kathryn D. Coronges & Andrea L. Bertozzi, 2016. "Modeling E-mail Networks and Inferring Leadership Using Self-Exciting Point Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 564-584, April.
    5. Frederic Paik Schoenberg & Marc Hoffmann & Ryan J. Harrigan, 2019. "A recursive point process model for infectious diseases," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1271-1287, October.
    6. Jakob Gulddahl Rasmussen, 2013. "Bayesian Inference for Hawkes Processes," Methodology and Computing in Applied Probability, Springer, vol. 15(3), pages 623-642, September.
    7. Bent Natvig & Ingunn Fride Tvete, 2007. "Bayesian Hierarchical Space–time Modeling of Earthquake Data," Methodology and Computing in Applied Probability, Springer, vol. 9(1), pages 89-114, March.
    8. Dewei Wang & Chendi Jiang & Chanseok Park, 2019. "Reliability analysis of load-sharing systems with memory," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 341-360, April.
    9. van den Hengel, G. & Franses, Ph.H.B.F., 2018. "Forecasting social conflicts in Africa using an Epidemic Type Aftershock Sequence model," Econometric Institute Research Papers EI2018-31, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    10. Mohler, George, 2014. "Marked point process hotspot maps for homicide and gun crime prediction in Chicago," International Journal of Forecasting, Elsevier, vol. 30(3), pages 491-497.
    11. Sebastian Meyer & Johannes Elias & Michael Höhle, 2012. "A Space–Time Conditional Intensity Model for Invasive Meningococcal Disease Occurrence," Biometrics, The International Biometric Society, vol. 68(2), pages 607-616, June.
    12. Lizhen Xu & Jason A. Duan & Andrew Whinston, 2014. "Path to Purchase: A Mutually Exciting Point Process Model for Online Advertising and Conversion," Management Science, INFORMS, vol. 60(6), pages 1392-1412, June.
    13. Giada Adelfio & Arianna Agosto & Marcello Chiodi & Paolo Giudici, 2021. "Financial contagion through space-time point processes," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 665-688, June.
    14. Angelos Dassios & Hongbiao Zhao, 2017. "A Generalized Contagion Process With An Application To Credit Risk," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-33, February.
    15. Samuel N. Cohen & Robert J. Elliott, 2013. "Filters and smoothers for self-exciting Markov modulated counting processes," Papers 1311.6257, arXiv.org.
    16. Chenlong Li & Kaiyan Cui, 2024. "Multivariate Hawkes processes with spatial covariates for spatiotemporal event data analysis," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(4), pages 535-578, August.
    17. Gilian van den Hengel & Philip Hans Franses, 2020. "Forecasting Social Conflicts in Africa Using an Epidemic Type Aftershock Sequence Model," Forecasting, MDPI, vol. 2(3), pages 1-25, August.
    18. Nader Davoudi & Hamid Reza Tavakoli & Mehdi Zare & Abdollah Jalilian, 2020. "Aftershock probabilistic seismic hazard analysis for Bushehr province in Iran using ETAS model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(3), pages 1159-1170, February.
    19. Philip A. White & Alan E. Gelfand, 2021. "Generalized Evolutionary Point Processes: Model Specifications and Model Comparison," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 1001-1021, September.
    20. V. Filimonov & D. Sornette, 2015. "Apparent criticality and calibration issues in the Hawkes self-excited point process model: application to high-frequency financial data," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1293-1314, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:72:y:2020:i:4:d:10.1007_s10463-019-00715-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.