IDEAS home Printed from https://ideas.repec.org/a/eee/retrec/v76y2019ics0739885919302495.html
   My bibliography  Save this article

An estimation of the future adoption rate of autonomous trucks by freight organizations

Author

Listed:
  • Simpson, Jesse R.
  • Mishra, Sabyasachee
  • Talebian, Ahmadreza
  • Golias, Mihalis M.

Abstract

This paper presents a model to estimate the future adoption of connected autonomous trucks (CATs) by freight transportation organizations. An accurate estimation of the market penetration rate of CATs is necessary to adequately prepare the infrastructure and legislation needed to support the technology. Building upon the theory of Diffusion of Innovations, we develop Bass models for various freight transportation innovations, including improved tractor and trailer aerodynamics, and anti-idling technologies for trucks. The proposed model accounts for heterogeneity between organizations by using a modified Bass model to vary parameters within a designated range for each of the potentially adopting organizations. The results of the paper are Bass models for existing freight organization innovation adoption and estimates of multiple scenarios of CAT adoption over time by freight organizations within the case study region of Shelby County, Tennessee and provide a foundation for organizational innovation adoption research. Our analyses suggest that the market penetration rate of CATs within 25 years varies from nearly universal adoption (i.e., more than 95%) to 20% or less depending on the rate at which autonomous technology improves over time, changes in public opinion on autonomous technology, and the addition of external influencing factors such as price and marketing.

Suggested Citation

  • Simpson, Jesse R. & Mishra, Sabyasachee & Talebian, Ahmadreza & Golias, Mihalis M., 2019. "An estimation of the future adoption rate of autonomous trucks by freight organizations," Research in Transportation Economics, Elsevier, vol. 76(C).
  • Handle: RePEc:eee:retrec:v:76:y:2019:i:c:s0739885919302495
    DOI: 10.1016/j.retrec.2019.100737
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0739885919302495
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.retrec.2019.100737?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yantao Huang & Kara M. Kockelman, 0. "What will autonomous trucking do to U.S. trade flows? Application of the random-utility-based multi-regional input–output model," Transportation, Springer, vol. 0, pages 1-28.
    2. Stephen Ryan & Catherine Tucker, 2012. "Heterogeneity and the dynamics of technology adoption," Quantitative Marketing and Economics (QME), Springer, vol. 10(1), pages 63-109, March.
    3. Frank M. Bass & Trichy V. Krishnan & Dipak C. Jain, 1994. "Why the Bass Model Fits without Decision Variables," Marketing Science, INFORMS, vol. 13(3), pages 203-223.
    4. Valeri, Eva & Gatta, Valerio & Teobaldelli, Désirée & Polidori, Paolo & Barratt, Benjamin & Fuzzi, Sandro & Kazepov, Yuri & Sergi, Vittorio & Williams, Martin & Maione, Michela, 2016. "Modelling individual preferences for environmental policy drivers: Empirical evidence of Italian lifestyle changes using a latent class approach," Environmental Science & Policy, Elsevier, vol. 65(C), pages 65-74.
    5. Fagnant, Daniel J. & Kockelman, Kara, 2015. "Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 167-181.
    6. Christophe Van den Bulte & Gary L. Lilien, 1997. "Bias and Systematic Change in the Parameter Estimates of Macro-Level Diffusion Models," Marketing Science, INFORMS, vol. 16(4), pages 338-353.
    7. Vijay Mahajan & Eitan Muller & Frank M. Bass, 1995. "Diffusion of New Products: Empirical Generalizations and Managerial Uses," Marketing Science, INFORMS, vol. 14(3_supplem), pages 79-88.
    8. Frank M. Bass, 2004. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 50(12_supple), pages 1825-1832, December.
    9. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    10. Dorothy Leonard-Barton & Isabelle Deschamps, 1988. "Managerial Influence in the Implementation of New Technology," Management Science, INFORMS, vol. 34(10), pages 1252-1265, October.
    11. Mahler, Alwin & Rogers, Everett M., 1999. "The diffusion of interactive communication innovations and the critical mass: the adoption of telecommunications services by German banks," Telecommunications Policy, Elsevier, vol. 23(10-11), pages 719-740, November.
    12. Piotr Przybyła & Katarzyna Sznajd-Weron & Rafał Weron, 2014. "Diffusion Of Innovation Within An Agent-Based Model: Spinsons, Independence And Advertising," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 17(01), pages 1-22.
    13. Frank M. Bass, 2004. "Comments on "A New Product Growth for Model Consumer Durables The Bass Model"," Management Science, INFORMS, vol. 50(12_supple), pages 1833-1840, December.
    14. Subramanian, A. & Nilakanta, S., 1996. "Organizational innovativeness: Exploring the relationship between organizational determinants of innovation, types of innovations, and measures of organizational performance," Omega, Elsevier, vol. 24(6), pages 631-647, December.
    15. Amini, Mehdi & Wakolbinger, Tina & Racer, Michael & Nejad, Mohammad G., 2012. "Alternative supply chain production–sales policies for new product diffusion: An agent-based modeling and simulation approach," European Journal of Operational Research, Elsevier, vol. 216(2), pages 301-311.
    16. Yogendra Kumar & Runa Sarkar & Sanjeev Swami, 2009. "Cluster‐based diffusion: aggregate and disaggregate level modeling," Journal of Advances in Management Research, Emerald Group Publishing Limited, vol. 6(1), pages 8-26, April.
    17. Bansal, Prateek & Kockelman, Kara M., 2017. "Forecasting Americans’ long-term adoption of connected and autonomous vehicle technologies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 49-63.
    18. Frambach, Ruud T. & Schillewaert, Niels, 2002. "Organizational innovation adoption: a multi-level framework of determinants and opportunities for future research," Journal of Business Research, Elsevier, vol. 55(2), pages 163-176, February.
    19. Palmer, Kate & Tate, James E. & Wadud, Zia & Nellthorp, John, 2018. "Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan," Applied Energy, Elsevier, vol. 209(C), pages 108-119.
    20. Massiani, Jérôme & Gohs, Andreas, 2015. "The choice of Bass model coefficients to forecast diffusion for innovative products: An empirical investigation for new automotive technologies," Research in Transportation Economics, Elsevier, vol. 50(C), pages 17-28.
    21. Wadud, Zia, 2017. "Fully automated vehicles: A cost of ownership analysis to inform early adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 163-176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sharma, Ishant & Mishra, Sabyasachee, 2022. "Quantifying the consumer’s dependence on different information sources on acceptance of autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 179-203.
    2. Engholm, Albin & Kristoffersson, Ida & Pernestal, Anna, 2021. "Impacts of large-scale driverless truck adoption on the freight transport system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 227-254.
    3. Talebian, Ahmadreza & Mishra, Sabyasachee, 2022. "Unfolding the state of the adoption of connected autonomous trucks by the commercial fleet owner industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    4. Cheng Hong & Yufang Guo & Yuhong Wang & Tingting Li, 2023. "The Integrated Scheduling Optimization for Container Handling by Using Driverless Electric Truck in Automated Container Terminal," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
    5. Catherine Taylor & Robert Waschik, 2022. "Evaluating the impact of automation in long-haul trucking using USAGE-Hwy," Centre of Policy Studies/IMPACT Centre Working Papers g-326, Victoria University, Centre of Policy Studies/IMPACT Centre.
    6. Schuster, Amy M. & Agrawal, Shubham & Britt, Noah & Sperry, Danielle & Van Fossen, Jenna A. & Wang, Sicheng & Mack, Elizabeth A. & Liberman, Jessica & Cotten, Shelia R., 2023. "Will automated vehicles solve the truck driver shortages? Perspectives from the trucking industry," Technology in Society, Elsevier, vol. 74(C).
    7. Simone Pettigrew & Leon Booth & Victoria Farrar & Branislava Godic & Julie Brown & Charles Karl & Jason Thompson, 2022. "Walking in the Era of Autonomous Vehicles," Sustainability, MDPI, vol. 14(17), pages 1-13, August.
    8. Kishore Bhoopalam, A. & van den Berg, R. & Agatz, N.A.H. & Chorus, C.G., 2021. "The long road to automated trucking: Insights from driver focus groups," ERIM Report Series Research in Management ERS-2021-003-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    9. Simpson, Jesse R. & Mishra, Sabyasachee, 2021. "Developing a methodology to predict the adoption rate of Connected Autonomous Trucks in transportation organizations using peer effects," Research in Transportation Economics, Elsevier, vol. 90(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simpson, Jesse R. & Mishra, Sabyasachee, 2021. "Developing a methodology to predict the adoption rate of Connected Autonomous Trucks in transportation organizations using peer effects," Research in Transportation Economics, Elsevier, vol. 90(C).
    2. Ramírez-Hassan, Andrés & Montoya-Blandón, Santiago, 2020. "Forecasting from others’ experience: Bayesian estimation of the generalized Bass model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 442-465.
    3. Anna Brdulak & Grażyna Chaberek & Jacek Jagodziński, 2020. "Development Forecasts for the Zero-Emission Bus Fleet in Servicing Public Transport in Chosen EU Member Countries," Energies, MDPI, vol. 13(16), pages 1-20, August.
    4. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    5. Han, Zhongya & Tang, Zhongjun & He, Bo, 2022. "Improved Bass model for predicting the popularity of product information posted on microblogs," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    6. Massiani, Jérôme & Gohs, Andreas, 2015. "The choice of Bass model coefficients to forecast diffusion for innovative products: An empirical investigation for new automotive technologies," Research in Transportation Economics, Elsevier, vol. 50(C), pages 17-28.
    7. Chumnumpan, Pattarin & Shi, Xiaohui, 2019. "Understanding new products’ market performance using Google Trends," Australasian marketing journal, Elsevier, vol. 27(2), pages 91-103.
    8. Barnes, Belinda & Southwell, Darren & Bruce, Sarah & Woodhams, Felicity, 2014. "Additionality, common practice and incentive schemes for the uptake of innovations," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 43-61.
    9. Guseo, Renato & Mortarino, Cinzia & Darda, Md Abud, 2015. "Homogeneous and heterogeneous diffusion models: Algerian natural gas production," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 366-378.
    10. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
    11. Krishnan, Trichy V. & Feng, Shanfei & Jain, Dipak C., 2023. "Peak sales time prediction in new product sales: Can a product manager rely on it?," Journal of Business Research, Elsevier, vol. 165(C).
    12. Najmeh Madadi & Azanizawati Ma’aram & Kuan Yew Wong, 2017. "A simulation-based product diffusion forecasting method using geometric Brownian motion and spline interpolation," Cogent Business & Management, Taylor & Francis Journals, vol. 4(1), pages 1300992-130, January.
    13. Brito, Thiago Luis Felipe & Islam, Towhidul & Stettler, Marc & Mouette, Dominique & Meade, Nigel & Moutinho dos Santos, Edmilson, 2019. "Transitions between technological generations of alternative fuel vehicles in Brazil," Energy Policy, Elsevier, vol. 134(C).
    14. Kurdgelashvili, Lado & Shih, Cheng-Hao & Yang, Fan & Garg, Mehul, 2019. "An empirical analysis of county-level residential PV adoption in California," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 321-333.
    15. Peters, Kay & Albers, Sönke & Kumar, V., 2008. "Is there more to international Diffusion than Culture? An investigation on the Role of Marketing and Industry Variables," EconStor Preprints 27678, ZBW - Leibniz Information Centre for Economics.
    16. Lixin Zhou & Jie Lin & Yanfeng Li & Zhenyu Zhang, 2020. "Innovation Diffusion of Mobile Applications in Social Networks: A Multi-Agent System," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    17. Laciana, Carlos E. & Rovere, Santiago L. & Podestá, Guillermo P., 2013. "Exploring associations between micro-level models of innovation diffusion and emerging macro-level adoption patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1873-1884.
    18. Badia, Hugo & Jenelius, Erik, 2021. "Design and operation of feeder systems in the era of automated and electric buses," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 146-172.
    19. Guo, Xuezhen, 2014. "A novel Bass-type model for product life cycle quantification using aggregate market data," International Journal of Production Economics, Elsevier, vol. 158(C), pages 208-216.
    20. Christos Michalakelis & Georgia Dede & Dimitris Varoutas & Thomas Sphicopoulos, 2010. "Estimating diffusion and price elasticity with application to telecommunications," Netnomics, Springer, vol. 11(3), pages 221-242, October.

    More about this item

    Keywords

    Connected autonomous trucks; Organizational adoption; Diffusion of innovations; Freight transportation; Market penetration predictions;
    All these keywords.

    JEL classification:

    • R42 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government and Private Investment Analysis; Road Maintenance; Transportation Planning

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:retrec:v:76:y:2019:i:c:s0739885919302495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/620614/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.