IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v63y2016icp414-422.html
   My bibliography  Save this article

Review on the blade design technologies of tidal current turbine

Author

Listed:
  • Li, Wei
  • Zhou, Hongbin
  • Liu, Hongwei
  • Lin, Yonggang
  • Xu, Quankun

Abstract

Tidal current turbine (TCT) is a kind of device which converts the tidal current energy into electricity and its technology has got rapid progress in last decade. The design of TCT includes the blade, power train, electrical system and power converter, sealing system and foundation, etc. In spite of the principle similarity to the wind energy, the design of the blade should be specially carried on for its characteristics of cavitation, corrosion resistance and the big force on the blades. In this paper, the technology developments of the TCT blade design are reviewed, including the hydrodynamics design and the structure design. Subsequently the key technologies to be researched for the TCT blade design are concluded and forecasted.

Suggested Citation

  • Li, Wei & Zhou, Hongbin & Liu, Hongwei & Lin, Yonggang & Xu, Quankun, 2016. "Review on the blade design technologies of tidal current turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 414-422.
  • Handle: RePEc:eee:rensus:v:63:y:2016:i:c:p:414-422
    DOI: 10.1016/j.rser.2016.05.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116301277
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.05.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bahaj, A.S & Myers, L.E, 2003. "Fundamentals applicable to the utilisation of marine current turbines for energy production," Renewable Energy, Elsevier, vol. 28(14), pages 2205-2211.
    2. Nicholls-Lee, R.F. & Turnock, S.R. & Boyd, S.W., 2013. "Application of bend-twist coupled blades for horizontal axis tidal turbines," Renewable Energy, Elsevier, vol. 50(C), pages 541-550.
    3. Liu, Pengfei, 2010. "A computational hydrodynamics method for horizontal axis turbine – Panel method modeling migration from propulsion to turbine energy," Energy, Elsevier, vol. 35(7), pages 2843-2851.
    4. Chapman, J.C. & Masters, I. & Togneri, M. & Orme, J.A.C., 2013. "The Buhl correction factor applied to high induction conditions for tidal stream turbines," Renewable Energy, Elsevier, vol. 60(C), pages 472-480.
    5. Batten, W.M.J. & Bahaj, A.S. & Molland, A.F. & Chaplin, J.R., 2008. "The prediction of the hydrodynamic performance of marine current turbines," Renewable Energy, Elsevier, vol. 33(5), pages 1085-1096.
    6. Lee, Ju Hyun & Park, Sunho & Kim, Dong Hwan & Rhee, Shin Hyung & Kim, Moon-Chan, 2012. "Computational methods for performance analysis of horizontal axis tidal stream turbines," Applied Energy, Elsevier, vol. 98(C), pages 512-523.
    7. Myers, L. & Bahaj, A.S., 2006. "Power output performance characteristics of a horizontal axis marine current turbine," Renewable Energy, Elsevier, vol. 31(2), pages 197-208.
    8. Bahaj, A.S. & Molland, A.F. & Chaplin, J.R. & Batten, W.M.J., 2007. "Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank," Renewable Energy, Elsevier, vol. 32(3), pages 407-426.
    9. Walker, Jessica M. & Flack, Karen A. & Lust, Ethan E. & Schultz, Michael P. & Luznik, Luksa, 2014. "Experimental and numerical studies of blade roughness and fouling on marine current turbine performance," Renewable Energy, Elsevier, vol. 66(C), pages 257-267.
    10. Liu, Pengfei & Veitch, Brian, 2012. "Design and optimization for strength and integrity of tidal turbine rotor blades," Energy, Elsevier, vol. 46(1), pages 393-404.
    11. Schluntz, J. & Willden, R.H.J., 2015. "The effect of blockage on tidal turbine rotor design and performance," Renewable Energy, Elsevier, vol. 81(C), pages 432-441.
    12. Singh, Patrick Mark & Choi, Young-Do, 2014. "Shape design and numerical analysis on a 1 MW tidal current turbine for the south-western coast of Korea," Renewable Energy, Elsevier, vol. 68(C), pages 485-493.
    13. Val, Dimitri V. & Chernin, Leon & Yurchenko, Daniil V., 2014. "Reliability analysis of rotor blades of tidal stream turbines," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 26-33.
    14. Goundar, Jai N. & Ahmed, M. Rafiuddin, 2013. "Design of a horizontal axis tidal current turbine," Applied Energy, Elsevier, vol. 111(C), pages 161-174.
    15. Jo, Chul hee & Yim, Jin young & Lee, Kang hee & Rho, Yu ho, 2012. "Performance of horizontal axis tidal current turbine by blade configuration," Renewable Energy, Elsevier, vol. 42(C), pages 195-206.
    16. Bahaj, A.S. & Batten, W.M.J. & McCann, G., 2007. "Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines," Renewable Energy, Elsevier, vol. 32(15), pages 2479-2490.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Si, Yulin & Liu, Xiaodong & Wang, Tao & Feng, Bo & Qian, Peng & Ma, Yong & Zhang, Dahai, 2022. "State-of-the-art review and future trends of development of tidal current energy converters in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Chen, Yaling & Lin, Binliang & Sun, Jian & Guo, Jinxi & Wu, Wenlong, 2019. "Hydrodynamic effects of the ratio of rotor diameter to water depth: An experimental study," Renewable Energy, Elsevier, vol. 136(C), pages 331-341.
    3. Zhang, Aiming & Liu, Sen & Ma, Yong & Hu, Chao & Li, Zhengyu, 2022. "Field tests on model efficiency of twin vertical axis helical hydrokinetic turbines," Energy, Elsevier, vol. 247(C).
    4. Ma, Yong & Zhu, Yuanyao & Zhang, Aiming & Hu, Chao & Liu, Sen & Li, Zhengyu, 2022. "Hydrodynamic performance of vertical axis hydrokinetic turbine based on Taguchi method," Renewable Energy, Elsevier, vol. 186(C), pages 573-584.
    5. Xu, Jian & Wang, Longyan & Yuan, Jianping & Luo, Zhaohui & Wang, Zilu & Zhang, Bowen & Tan, Andy C.C., 2024. "DLFSI: A deep learning static fluid-structure interaction model for hydrodynamic-structural optimization of composite tidal turbine blade," Renewable Energy, Elsevier, vol. 224(C).
    6. Nachtane, M. & Tarfaoui, M. & Goda, I. & Rouway, M., 2020. "A review on the technologies, design considerations and numerical models of tidal current turbines," Renewable Energy, Elsevier, vol. 157(C), pages 1274-1288.
    7. Zhang, Dahai & Liu, Di & Liu, Xiaodong & Xu, Haiyang & Wang, Yuankui & Bi, Ran & Qian, Peng, 2024. "Unsteady effects of a winglet on the performance of horizontal-axis tidal turbine," Renewable Energy, Elsevier, vol. 225(C).
    8. Alamian, Rezvan & Shafaghat, Rouzbeh & Amiri, Hoseyn A. & Shadloo, Mostafa Safdari, 2020. "Experimental assessment of a 100 W prototype horizontal axis tidal turbine by towing tank tests," Renewable Energy, Elsevier, vol. 155(C), pages 172-180.
    9. Larissa Perez & Remo Cossu & Camille Couzi & Irene Penesis, 2020. "Wave-Turbulence Decomposition Methods Applied to Tidal Energy Site Assessment," Energies, MDPI, vol. 13(5), pages 1-21, March.
    10. Wang, Liguo & Isberg, Jan & Tedeschi, Elisabetta, 2018. "Review of control strategies for wave energy conversion systems and their validation: the wave-to-wire approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 366-379.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wen-Quan & Yin, Rui & Yan, Yan, 2019. "Design and prediction hydrodynamic performance of horizontal axis micro-hydrokinetic river turbine," Renewable Energy, Elsevier, vol. 133(C), pages 91-102.
    2. Abutunis, Abdulaziz & Hussein, Rafid & Chandrashekhara, K., 2019. "A neural network approach to enhance blade element momentum theory performance for horizontal axis hydrokinetic turbine application," Renewable Energy, Elsevier, vol. 136(C), pages 1281-1293.
    3. Wu, Baigong & Zhang, Xueming & Chen, Jianmei & Xu, Mingqi & Li, Shuangxin & Li, Guangzhe, 2013. "Design of high-efficient and universally applicable blades of tidal stream turbine," Energy, Elsevier, vol. 60(C), pages 187-194.
    4. Kai-Wern Ng & Wei-Haur Lam & Khai-Ching Ng, 2013. "2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines," Energies, MDPI, vol. 6(3), pages 1-30, March.
    5. Xu, Jian & Wang, Longyan & Yuan, Jianping & Shi, Jiali & Wang, Zilu & Zhang, Bowen & Luo, Zhaohui & Tan, Andy C.C., 2023. "A cost-effective CNN-BEM coupling framework for design optimization of horizontal axis tidal turbine blades," Energy, Elsevier, vol. 282(C).
    6. Nachtane, M. & Tarfaoui, M. & Goda, I. & Rouway, M., 2020. "A review on the technologies, design considerations and numerical models of tidal current turbines," Renewable Energy, Elsevier, vol. 157(C), pages 1274-1288.
    7. Chen, Long & Lam, Wei-Haur, 2015. "A review of survivability and remedial actions of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 891-900.
    8. Silva, Paulo Augusto Strobel Freitas & Shinomiya, Léo Daiki & de Oliveira, Taygoara Felamingo & Vaz, Jerson Rogério Pinheiro & Amarante Mesquita, André Luiz & Brasil Junior, Antonio Cesar Pinho, 2017. "Analysis of cavitation for the optimized design of hydrokinetic turbines using BEM," Applied Energy, Elsevier, vol. 185(P2), pages 1281-1291.
    9. Li, Binghui & de Queiroz, Anderson Rodrigo & DeCarolis, Joseph F. & Bane, John & He, Ruoying & Keeler, Andrew G. & Neary, Vincent S., 2017. "The economics of electricity generation from Gulf Stream currents," Energy, Elsevier, vol. 134(C), pages 649-658.
    10. Ramin Alipour & Roozbeh Alipour & Seyed Saeid Rahimian Koloor & Michal Petrů & Seyed Alireza Ghazanfari, 2020. "On the Performance of Small-Scale Horizontal Axis Tidal Current Turbines. Part 1: One Single Turbine," Sustainability, MDPI, vol. 12(15), pages 1-25, July.
    11. Dong, Yongjun & Guo, Jingfu & Chen, Jianmei & Sun, Chao & Zhu, Wanqiang & Chen, Liwei & Zhang, Xueming, 2021. "Development of a 300 kW horizontal-axis tidal stream energy conversion system with adaptive variable-pitch turbine and direct-drive PMSG," Energy, Elsevier, vol. 226(C).
    12. Attukur Nandagopal, Rajaram & Narasimalu, Srikanth, 2020. "Multi-objective optimization of hydrofoil geometry used in horizontal axis tidal turbine blade designed for operation in tropical conditions of South East Asia," Renewable Energy, Elsevier, vol. 146(C), pages 166-180.
    13. Liu, Hong-wei & Ma, Shun & Li, Wei & Gu, Hai-gang & Lin, Yong-gang & Sun, Xiao-jing, 2011. "A review on the development of tidal current energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1141-1146, February.
    14. Mujahid Badshah & Saeed Badshah & James VanZwieten & Sakhi Jan & Muhammad Amir & Suheel Abdullah Malik, 2019. "Coupled Fluid-Structure Interaction Modelling of Loads Variation and Fatigue Life of a Full-Scale Tidal Turbine under the Effect of Velocity Profile," Energies, MDPI, vol. 12(11), pages 1-22, June.
    15. Wang, Shu-qi & Cui, Jie & Ye, Ren-chuan & Chen, Zhong-fei & Zhang, Liang, 2019. "Study of the hydrodynamic performance prediction method for a horizontal-axis tidal current turbine with coupled rotation and surging motion," Renewable Energy, Elsevier, vol. 135(C), pages 313-325.
    16. Ian Masters & Alison Williams & T. Nick Croft & Michael Togneri & Matt Edmunds & Enayatollah Zangiabadi & Iain Fairley & Harshinie Karunarathna, 2015. "A Comparison of Numerical Modelling Techniques for Tidal Stream Turbine Analysis," Energies, MDPI, vol. 8(8), pages 1-21, July.
    17. Xu, Jian & Wang, Longyan & Yuan, Jianping & Luo, Zhaohui & Wang, Zilu & Zhang, Bowen & Tan, Andy C.C., 2024. "DLFSI: A deep learning static fluid-structure interaction model for hydrodynamic-structural optimization of composite tidal turbine blade," Renewable Energy, Elsevier, vol. 224(C).
    18. Liu, Hongwei & Lin, Yonggang & Shi, Maoshun & Li, Wei & Gu, Haigang & Xu, Quankun & Tu, Le, 2015. "A novel hydraulic-mechanical hybrid transmission in tidal current turbines," Renewable Energy, Elsevier, vol. 81(C), pages 31-42.
    19. Wang, Shu-qi & Sun, Ke & Xu, Gang & Liu, Yong-tao & Bai, Xu, 2017. "Hydrodynamic analysis of horizontal-axis tidal current turbine with rolling and surging coupled motions," Renewable Energy, Elsevier, vol. 102(PA), pages 87-97.
    20. Edmunds, Matt & Williams, Alison J. & Masters, Ian & Banerjee, Arindam & VanZwieten, James H., 2020. "A spatially nonlinear generalised actuator disk model for the simulation of horizontal axis wind and tidal turbines," Energy, Elsevier, vol. 194(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:63:y:2016:i:c:p:414-422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.