IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v81y2015icp432-441.html
   My bibliography  Save this article

The effect of blockage on tidal turbine rotor design and performance

Author

Listed:
  • Schluntz, J.
  • Willden, R.H.J.

Abstract

The performance-enhancing effects of closely packing tidal turbines in single row arrays (tidal fences) are evaluated in this computational study. Infinitely long tidal fences are simulated with a range of lateral rotor spacings using a blade element momentum method embedded in a Reynolds averaged Navier–Stokes solver (RANS-BEM).

Suggested Citation

  • Schluntz, J. & Willden, R.H.J., 2015. "The effect of blockage on tidal turbine rotor design and performance," Renewable Energy, Elsevier, vol. 81(C), pages 432-441.
  • Handle: RePEc:eee:renene:v:81:y:2015:i:c:p:432-441
    DOI: 10.1016/j.renene.2015.02.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115001664
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.02.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Guanghui & Li, Jun & Fan, Pengfei & Li, Guojun, 2013. "Numerical investigations of the effects of different arrays on power extractions of horizontal axis tidal current turbines," Renewable Energy, Elsevier, vol. 53(C), pages 180-186.
    2. Bai, X. & Avital, E.J. & Munjiza, A. & Williams, J.J.R., 2014. "Numerical simulation of a marine current turbine in free surface flow," Renewable Energy, Elsevier, vol. 63(C), pages 715-723.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdulaziz Abutunis & Venkata Gireesh Menta, 2022. "Comprehensive Parametric Study of Blockage Effect on the Performance of Horizontal Axis Hydrokinetic Turbines," Energies, MDPI, vol. 15(7), pages 1-22, April.
    2. Almoghayer, Mohammed A. & Woolf, David K. & Kerr, Sandy & Davies, Gareth, 2022. "Integration of tidal energy into an island energy system – A case study of Orkney islands," Energy, Elsevier, vol. 242(C).
    3. Li, Wei & Zhou, Hongbin & Liu, Hongwei & Lin, Yonggang & Xu, Quankun, 2016. "Review on the blade design technologies of tidal current turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 414-422.
    4. Koh, W.X.M. & Ng, E.Y.K., 2017. "A CFD study on the performance of a tidal turbine under various flow and blockage conditions," Renewable Energy, Elsevier, vol. 107(C), pages 124-137.
    5. Chen, Long & Hashim, Roslan & Othman, Faridah & Motamedi, Shervin, 2017. "Experimental study on scour profile of pile-supported horizontal axis tidal current turbine," Renewable Energy, Elsevier, vol. 114(PB), pages 744-754.
    6. Belloni, C.S.K. & Willden, R.H.J. & Houlsby, G.T., 2017. "An investigation of ducted and open-centre tidal turbines employing CFD-embedded BEM," Renewable Energy, Elsevier, vol. 108(C), pages 622-634.
    7. Haechang Jeong & Changjo Yang, 2024. "Variation in Flow Characteristics and Power Performance Due to Axial Distance Optimization in the Design of Counter-Rotating Tidal Turbines," Energies, MDPI, vol. 17(13), pages 1-21, June.
    8. Sarlak, H. & Nishino, T. & Martínez-Tossas, L.A. & Meneveau, C. & Sørensen, J.N., 2016. "Assessment of blockage effects on the wake characteristics and power of wind turbines," Renewable Energy, Elsevier, vol. 93(C), pages 340-352.
    9. Ahmed Gharib-Yosry & Eduardo Blanco-Marigorta & Aitor Fernández-Jiménez & Rodolfo Espina-Valdés & Eduardo Álvarez-Álvarez, 2021. "Wind–Water Experimental Analysis of Small SC-Darrieus Turbine: An Approach for Energy Production in Urban Systems," Sustainability, MDPI, vol. 13(9), pages 1-15, May.
    10. Ross, Hannah & Polagye, Brian, 2020. "An experimental assessment of analytical blockage corrections for turbines," Renewable Energy, Elsevier, vol. 152(C), pages 1328-1341.
    11. Nunes, Matheus M. & Mendes, Rafael C.F. & Oliveira, Taygoara F. & Brasil Junior, Antonio C.P., 2019. "An experimental study on the diffuser-enhanced propeller hydrokinetic turbines," Renewable Energy, Elsevier, vol. 133(C), pages 840-848.
    12. El Fajri, Oumnia & Bowman, Joshua & Bhushan, Shanti & Thompson, David & O'Doherty, Tim, 2022. "Numerical study of the effect of tip-speed ratio on hydrokinetic turbine wake recovery," Renewable Energy, Elsevier, vol. 182(C), pages 725-750.
    13. Vinod, Ashwin & Banerjee, Arindam, 2019. "Performance and near-wake characterization of a tidal current turbine in elevated levels of free stream turbulence," Applied Energy, Elsevier, vol. 254(C).
    14. Chen, Yaling & Lin, Binliang & Lin, Jie & Wang, Shujie, 2017. "Experimental study of wake structure behind a horizontal axis tidal stream turbine," Applied Energy, Elsevier, vol. 196(C), pages 82-96.
    15. Chen, Yaling & Wang, Dayu & Wang, Dangwei, 2024. "The flow field within a staggered hydrokinetic turbine array," Renewable Energy, Elsevier, vol. 224(C).
    16. Edmunds, Matt & Williams, Alison J. & Masters, Ian & Banerjee, Arindam & VanZwieten, James H., 2020. "A spatially nonlinear generalised actuator disk model for the simulation of horizontal axis wind and tidal turbines," Energy, Elsevier, vol. 194(C).
    17. Nasteho Djama Dirieh & Jérôme Thiébot & Sylvain Guillou & Nicolas Guillou, 2022. "Blockage Corrections for Tidal Turbines—Application to an Array of Turbines in the Alderney Race," Energies, MDPI, vol. 15(10), pages 1-18, May.
    18. Attukur Nandagopal, Rajaram & Narasimalu, Srikanth, 2020. "Multi-objective optimization of hydrofoil geometry used in horizontal axis tidal turbine blade designed for operation in tropical conditions of South East Asia," Renewable Energy, Elsevier, vol. 146(C), pages 166-180.
    19. Vogel, C.R. & Willden, R.H.J. & Houlsby, G.T., 2019. "Tidal stream turbine power capping in a head-driven tidal channel," Renewable Energy, Elsevier, vol. 136(C), pages 491-499.
    20. Laws, Nicholas D. & Epps, Brenden P., 2016. "Hydrokinetic energy conversion: Technology, research, and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1245-1259.
    21. Ebdon, Tim & Allmark, Matthew J. & O’Doherty, Daphne M. & Mason-Jones, Allan & O’Doherty, Tim & Germain, Gregory & Gaurier, Benoit, 2021. "The impact of turbulence and turbine operating condition on the wakes of tidal turbines," Renewable Energy, Elsevier, vol. 165(P2), pages 96-116.
    22. Tianming Zhang & Wei Haur Lam & Yonggang Cui & Jinxin Jiang & Chong Sun & Jianhua Guo & Yanbo Ma & Shuguang Wang & Su Shiung Lam & Gerard Hamill, 2019. "Tip-Bed Velocity and Scour Depth of Horizontal-Axis Tidal Turbine with Consideration of Tip Clearance," Energies, MDPI, vol. 12(12), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian, Peng & Feng, Bo & Liu, Hao & Tian, Xiange & Si, Yulin & Zhang, Dahai, 2019. "Review on configuration and control methods of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 125-139.
    2. Almoghayer, Mohammed A. & Woolf, David K. & Kerr, Sandy & Davies, Gareth, 2022. "Integration of tidal energy into an island energy system – A case study of Orkney islands," Energy, Elsevier, vol. 242(C).
    3. Segura, E. & Morales, R. & Somolinos, J.A., 2018. "A strategic analysis of tidal current energy conversion systems in the European Union," Applied Energy, Elsevier, vol. 212(C), pages 527-551.
    4. Bai, Guanghui & Li, Wei & Chang, Hao & Li, Guojun, 2016. "The effect of tidal current directions on the optimal design and hydrodynamic performance of a three-turbine system," Renewable Energy, Elsevier, vol. 94(C), pages 48-54.
    5. Dominguez, Favio & Achard, Jean-Luc & Zanette, Jerônimo & Corre, Christophe, 2016. "Fast power output prediction for a single row of ducted cross-flow water turbines using a BEM-RANS approach," Renewable Energy, Elsevier, vol. 89(C), pages 658-670.
    6. Kartezhnikova, Maria & Ravens, Thomas M., 2014. "Hydraulic impacts of hydrokinetic devices," Renewable Energy, Elsevier, vol. 66(C), pages 425-432.
    7. Marina Barbarić & Zvonimir Guzović, 2020. "Investigation of the Possibilities to Improve Hydrodynamic Performances of Micro-Hydrokinetic Turbines," Energies, MDPI, vol. 13(17), pages 1-20, September.
    8. Jun-Feng Hu & Wen-Xue Wang, 2015. "Upgrading a Shrouded Wind Turbine with a Self-Adaptive Flanged Diffuser," Energies, MDPI, vol. 8(6), pages 1-19, June.
    9. Tian, Linlin & Song, Yilei & Zhao, Ning & Shen, Wenzhong & Zhu, Chunling & Wang, Tongguang, 2020. "Effects of turbulence modelling in AD/RANS simulations of single wind & tidal turbine wakes and double wake interactions," Energy, Elsevier, vol. 208(C).
    10. Guo, Qiang & Zhou, Lingjiu & Wang, Zhengwei, 2015. "Comparison of BEM-CFD and full rotor geometry simulations for the performance and flow field of a marine current turbine," Renewable Energy, Elsevier, vol. 75(C), pages 640-648.
    11. Nguyen, Van Thinh & Guillou, Sylvain S. & Thiébot, Jérôme & Santa Cruz, Alina, 2016. "Modelling turbulence with an Actuator Disk representing a tidal turbine," Renewable Energy, Elsevier, vol. 97(C), pages 625-635.
    12. Linlin Tian & Yilei Song & Ning Zhao & Wenzhong Shen & Tongguang Wang, 2019. "AD/RANS Simulations of Wind Turbine Wake Flow Employing the RSM Turbulence Model: Impact of Isotropic and Anisotropic Inflow Conditions," Energies, MDPI, vol. 12(21), pages 1-14, October.
    13. Li, Xiaorong & Li, Ming & Jordan, Laura-Beth & McLelland, Stuart & Parsons, Daniel R. & Amoudry, Laurent O. & Song, Qingyang & Comerford, Liam, 2019. "Modelling impacts of tidal stream turbines on surface waves," Renewable Energy, Elsevier, vol. 130(C), pages 725-734.
    14. Van Thinh Nguyen & Alina Santa Cruz & Sylvain S. Guillou & Mohamad N. Shiekh Elsouk & Jérôme Thiébot, 2019. "Effects of the Current Direction on the Energy Production of a Tidal Farm: The Case of Raz Blanchard (France)," Energies, MDPI, vol. 12(13), pages 1-20, June.
    15. Lo Brutto, Ottavio A. & Thiébot, Jérôme & Guillou, Sylvain S. & Gualous, Hamid, 2016. "A semi-analytic method to optimize tidal farm layouts – Application to the Alderney Race (Raz Blanchard), France," Applied Energy, Elsevier, vol. 183(C), pages 1168-1180.
    16. Wang, Wen-Quan & Yin, Rui & Yan, Yan, 2019. "Design and prediction hydrodynamic performance of horizontal axis micro-hydrokinetic river turbine," Renewable Energy, Elsevier, vol. 133(C), pages 91-102.
    17. Laws, Nicholas D. & Epps, Brenden P., 2016. "Hydrokinetic energy conversion: Technology, research, and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1245-1259.
    18. Leidy Tatiana Contreras & Omar Dario Lopez & Santiago Lain, 2018. "Computational Fluid Dynamics Modelling and Simulation of an Inclined Horizontal Axis Hydrokinetic Turbine," Energies, MDPI, vol. 11(11), pages 1-23, November.
    19. Zhang, Baoshou & Li, Boyang & Li, Canpeng & Zhang, Yongbo & Lv, Jingze & Yu, Haidong, 2024. "Effects of submergence depth on the performance of the savonius hydrokinetic turbine near a free surface," Energy, Elsevier, vol. 289(C).
    20. Kolekar, Nitin & Banerjee, Arindam, 2015. "Performance characterization and placement of a marine hydrokinetic turbine in a tidal channel under boundary proximity and blockage effects," Applied Energy, Elsevier, vol. 148(C), pages 121-133.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:81:y:2015:i:c:p:432-441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.