IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v81y2015icp31-42.html
   My bibliography  Save this article

A novel hydraulic-mechanical hybrid transmission in tidal current turbines

Author

Listed:
  • Liu, Hongwei
  • Lin, Yonggang
  • Shi, Maoshun
  • Li, Wei
  • Gu, Haigang
  • Xu, Quankun
  • Tu, Le

Abstract

Tidal current energy is a promising renewable energy, and it has become a research hotspot all over the world. Tidal current turbines (TCTs) are the devices that capture tidal current energy and convert it into electricity. Power train is one of the key technologies, and a gearbox is traditionally used. Because of the disadvantages of the gearbox, several soft power transmission methods have been studied, such as hydraulic power train and direct-drive train. Aiming for maximum power point tracking (MPPT) and constant frequency simultaneously, this paper introduces the hydraulic-mechanical hybrid transmission for TCT. Different from the traditional mechanical transmission, the hydraulic-mechanical hybrid transmission uses a two-degree-of-freedom planetary gear (TDPG) as the power split device. In this transmission, the rotor speed can be regulated by hydraulic pump displacement control to realize the MPPT, and the power can be stabilized through the hydraulic system. In this paper, the hydraulic-mechanical hybrid transmission is introduced, and the characteristics of the TDPG are analyzed first. Then, the control strategy of TCT is proposed. Finally, the system is modeled and constructed, and the simulation results confirm the validity of the hydraulic-mechanical hybrid transmission of TCT.

Suggested Citation

  • Liu, Hongwei & Lin, Yonggang & Shi, Maoshun & Li, Wei & Gu, Haigang & Xu, Quankun & Tu, Le, 2015. "A novel hydraulic-mechanical hybrid transmission in tidal current turbines," Renewable Energy, Elsevier, vol. 81(C), pages 31-42.
  • Handle: RePEc:eee:renene:v:81:y:2015:i:c:p:31-42
    DOI: 10.1016/j.renene.2015.02.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115001779
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.02.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Hong-wei & Ma, Shun & Li, Wei & Gu, Hai-gang & Lin, Yong-gang & Sun, Xiao-jing, 2011. "A review on the development of tidal current energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1141-1146, February.
    2. Myers, L. & Bahaj, A.S., 2006. "Power output performance characteristics of a horizontal axis marine current turbine," Renewable Energy, Elsevier, vol. 31(2), pages 197-208.
    3. Ahn, K.K. & Truong, D.Q. & Tien, Hoang Huu & Yoon, Jong Il, 2012. "An innovative design of wave energy converter," Renewable Energy, Elsevier, vol. 42(C), pages 186-194.
    4. Lee, Ju Hyun & Park, Sunho & Kim, Dong Hwan & Rhee, Shin Hyung & Kim, Moon-Chan, 2012. "Computational methods for performance analysis of horizontal axis tidal stream turbines," Applied Energy, Elsevier, vol. 98(C), pages 512-523.
    5. Jo, Chul hee & Yim, Jin young & Lee, Kang hee & Rho, Yu ho, 2012. "Performance of horizontal axis tidal current turbine by blade configuration," Renewable Energy, Elsevier, vol. 42(C), pages 195-206.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Gang & Zhu, Weidong, 2022. "Time-delay closed-loop control of an infinitely variable transmission system for tidal current energy converters," Renewable Energy, Elsevier, vol. 189(C), pages 1120-1132.
    2. Yu, Jin & Song, Yurun & Zhang, Huasen & Dong, Xiaohan, 2022. "Novel design of compound coupled hydro-mechanical transmission on heavy-duty vehicle for energy recycling," Energy, Elsevier, vol. 239(PD).
    3. Gu, Ya-jing & Yin, Xiu-xing & Liu, Hong-wei & Li, Wei & Lin, Yong-gang, 2015. "Fuzzy terminal sliding mode control for extracting maximum marine current energy," Energy, Elsevier, vol. 90(P1), pages 258-265.
    4. Qian, Peng & Feng, Bo & Liu, Hao & Tian, Xiange & Si, Yulin & Zhang, Dahai, 2019. "Review on configuration and control methods of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 125-139.
    5. Francesco Bottiglione & Giacomo Mantriota & Marco Valle, 2018. "Power-Split Hydrostatic Transmissions for Wind Energy Systems," Energies, MDPI, vol. 11(12), pages 1-15, December.
    6. Wang, Kunlin & Sheng, Songwei & Zhang, Yaqun & Ye, Yin & Jiang, Jiaqiang & Lin, Hongjun & Huang, Zhenxin & Wang, Zhenpeng & You, Yage, 2019. "Principle and control strategy of pulse width modulation rectifier for hydraulic power generation system," Renewable Energy, Elsevier, vol. 135(C), pages 1200-1206.
    7. Tao Wang & He Wang, 2017. "Research on an Integrated Hydrostatic-Driven Electric Generator with Controllable Load for Renewable Energy Applications," Energies, MDPI, vol. 10(9), pages 1-17, August.
    8. Zielinski, Michał & Myszkowski, Adam & Pelic, Marcin & Staniek, Roman, 2022. "Low-speed radial piston pump as an effective alternative power transmission for small hydropower plants," Renewable Energy, Elsevier, vol. 182(C), pages 1012-1027.
    9. Gang Li & Weidong Zhu, 2022. "A Review on Up-to-Date Gearbox Technologies and Maintenance of Tidal Current Energy Converters," Energies, MDPI, vol. 15(23), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Wei & Zhou, Hongbin & Liu, Hongwei & Lin, Yonggang & Xu, Quankun, 2016. "Review on the blade design technologies of tidal current turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 414-422.
    2. Wu, Baigong & Zhang, Xueming & Chen, Jianmei & Xu, Mingqi & Li, Shuangxin & Li, Guangzhe, 2013. "Design of high-efficient and universally applicable blades of tidal stream turbine," Energy, Elsevier, vol. 60(C), pages 187-194.
    3. Wang, Wen-Quan & Yin, Rui & Yan, Yan, 2019. "Design and prediction hydrodynamic performance of horizontal axis micro-hydrokinetic river turbine," Renewable Energy, Elsevier, vol. 133(C), pages 91-102.
    4. Silva, Paulo Augusto Strobel Freitas & Shinomiya, Léo Daiki & de Oliveira, Taygoara Felamingo & Vaz, Jerson Rogério Pinheiro & Amarante Mesquita, André Luiz & Brasil Junior, Antonio Cesar Pinho, 2017. "Analysis of cavitation for the optimized design of hydrokinetic turbines using BEM," Applied Energy, Elsevier, vol. 185(P2), pages 1281-1291.
    5. Vennell, Ross & Funke, Simon W. & Draper, Scott & Stevens, Craig & Divett, Tim, 2015. "Designing large arrays of tidal turbines: A synthesis and review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 454-472.
    6. Ramin Alipour & Roozbeh Alipour & Seyed Saeid Rahimian Koloor & Michal Petrů & Seyed Alireza Ghazanfari, 2020. "On the Performance of Small-Scale Horizontal Axis Tidal Current Turbines. Part 1: One Single Turbine," Sustainability, MDPI, vol. 12(15), pages 1-25, July.
    7. Dong, Yongjun & Guo, Jingfu & Chen, Jianmei & Sun, Chao & Zhu, Wanqiang & Chen, Liwei & Zhang, Xueming, 2021. "Development of a 300 kW horizontal-axis tidal stream energy conversion system with adaptive variable-pitch turbine and direct-drive PMSG," Energy, Elsevier, vol. 226(C).
    8. Gu, Ya-jing & Lin, Yong-gang & Xu, Quan-kun & Liu, Hong-wei & Li, Wei, 2018. "Blade-pitch system for tidal current turbines with reduced variation pitch control strategy based on tidal current velocity preview," Renewable Energy, Elsevier, vol. 115(C), pages 149-158.
    9. Duan, Derong & Lin, Xiangyang & Wang, Muhao & Liu, Xia & Gao, Changqing & Zhang, Hui & Yang, Xuefeng, 2024. "Study on energy conversion efficiency of wave generation in shake plate mode," Energy, Elsevier, vol. 290(C).
    10. Goundar, Jai N. & Ahmed, M. Rafiuddin, 2013. "Design of a horizontal axis tidal current turbine," Applied Energy, Elsevier, vol. 111(C), pages 161-174.
    11. Liu, Hong-wei & Ma, Shun & Li, Wei & Gu, Hai-gang & Lin, Yong-gang & Sun, Xiao-jing, 2011. "A review on the development of tidal current energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1141-1146, February.
    12. Bonovas, Markos I. & Anagnostopoulos, Ioannis S., 2020. "Modelling of operation and optimum design of a wave power take-off system with energy storage," Renewable Energy, Elsevier, vol. 147(P1), pages 502-514.
    13. de Jesus Henriques, Tiago A. & Hedges, Terry S. & Owen, Ieuan & Poole, Robert J., 2016. "The influence of blade pitch angle on the performance of a model horizontal axis tidal stream turbine operating under wave–current interaction," Energy, Elsevier, vol. 102(C), pages 166-175.
    14. Wang, Y. & Sun, X.J. & Zhu, B. & Zhang, H.J. & Huang, D.G., 2016. "Effect of blade vortex interaction on performance of Darrieus-type cross flow marine current turbine," Renewable Energy, Elsevier, vol. 86(C), pages 316-323.
    15. Wang, Shu-qi & Cui, Jie & Ye, Ren-chuan & Chen, Zhong-fei & Zhang, Liang, 2019. "Study of the hydrodynamic performance prediction method for a horizontal-axis tidal current turbine with coupled rotation and surging motion," Renewable Energy, Elsevier, vol. 135(C), pages 313-325.
    16. Sergei V. Akopov, 2018. "“Duty” and “Blame” in Russian Official Symbolic Representations of Sovereignty (1994-2018)," HSE Working papers WP BRP 61/PS/2018, National Research University Higher School of Economics.
    17. Abutunis, Abdulaziz & Hussein, Rafid & Chandrashekhara, K., 2019. "A neural network approach to enhance blade element momentum theory performance for horizontal axis hydrokinetic turbine application," Renewable Energy, Elsevier, vol. 136(C), pages 1281-1293.
    18. Sierra, J.P. & González-Marco, D. & Sospedra, J. & Gironella, X. & Mösso, C. & Sánchez-Arcilla, A., 2013. "Wave energy resource assessment in Lanzarote (Spain)," Renewable Energy, Elsevier, vol. 55(C), pages 480-489.
    19. Yang, P. & Xiang, J. & Fang, F. & Pain, C.C., 2019. "A fidelity fluid-structure interaction model for vertical axis tidal turbines in turbulence flows," Applied Energy, Elsevier, vol. 236(C), pages 465-477.
    20. Liu, Xiaodong & Chen, Zheng & Si, Yulin & Qian, Peng & Wu, He & Cui, Lin & Zhang, Dahai, 2021. "A review of tidal current energy resource assessment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:81:y:2015:i:c:p:31-42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.