IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v68y2014icp485-493.html
   My bibliography  Save this article

Shape design and numerical analysis on a 1 MW tidal current turbine for the south-western coast of Korea

Author

Listed:
  • Singh, Patrick Mark
  • Choi, Young-Do

Abstract

The study concentrates on the shape design and numerical analysis of a 1 MW horizontal axis tidal current turbine (HATCT), which can be applied near the southwest regions of Korea. On the basis of actual tidal current conditions of south-western region of Korea, configuration design of 1 MW class turbine rotor blade is carried out by blade element momentum theory (BEMT). The hydrodynamic performance including the lift and drag forces, is conducted with the variation of the angle of attack using an open source code of X-Foil. The optimized blade geometry is used for Computational Fluid Dynamics (CFD) analysis with hexahedral numerical grids. This study focuses on developing a new hydrofoil and designing a blade with relatively shorter chord length in contrast to a typical TCT blade. Therefore, after a thorough study of two common hydrofoils, (S814 and DU-91-W2-250, which show good performance for rough conditions), a new hydrofoil, MNU26, is developed. The new hydrofoil has a 26% thickness that can be applied throughout the blade length, giving good structural strength. Power coefficient, pressure and velocity distributions are investigated according to Tip Speed Ratio by CFD analysis. As cavitation analysis is also an important part of the study, it is investigated for all the three hydrofoils. Due to the shorter chord length of the new turbine blade in contrast to a typical TCT blade design, a Fluid Structure Interaction (FSI) analysis is also done. Concrete conclusions have been made after comparing the three hydrofoils, considering their performance, efficiency, occurrence of cavitation and structural feasibility.

Suggested Citation

  • Singh, Patrick Mark & Choi, Young-Do, 2014. "Shape design and numerical analysis on a 1 MW tidal current turbine for the south-western coast of Korea," Renewable Energy, Elsevier, vol. 68(C), pages 485-493.
  • Handle: RePEc:eee:renene:v:68:y:2014:i:c:p:485-493
    DOI: 10.1016/j.renene.2014.02.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114001232
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.02.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicholls-Lee, R.F. & Turnock, S.R. & Boyd, S.W., 2013. "Application of bend-twist coupled blades for horizontal axis tidal turbines," Renewable Energy, Elsevier, vol. 50(C), pages 541-550.
    2. Do-Seong Byun & Deirdre E. Hart & Woo-Jin Jeong, 2013. "Tidal Current Energy Resources off the South and West Coasts of Korea: Preliminary Observation-Derived Estimates," Energies, MDPI, vol. 6(2), pages 1-13, January.
    3. Esteban, Miguel & Leary, David, 2012. "Current developments and future prospects of offshore wind and ocean energy," Applied Energy, Elsevier, vol. 90(1), pages 128-136.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Wei & Zhou, Hongbin & Liu, Hongwei & Lin, Yonggang & Xu, Quankun, 2016. "Review on the blade design technologies of tidal current turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 414-422.
    2. Ramin Alipour & Roozbeh Alipour & Seyed Saeid Rahimian Koloor & Michal Petrů & Seyed Alireza Ghazanfari, 2020. "On the Performance of Small-Scale Horizontal Axis Tidal Current Turbines. Part 1: One Single Turbine," Sustainability, MDPI, vol. 12(15), pages 1-25, July.
    3. Xu, Jian & Wang, Longyan & Yuan, Jianping & Luo, Zhaohui & Wang, Zilu & Zhang, Bowen & Tan, Andy C.C., 2024. "DLFSI: A deep learning static fluid-structure interaction model for hydrodynamic-structural optimization of composite tidal turbine blade," Renewable Energy, Elsevier, vol. 224(C).
    4. Chen, Yanling & Yang, Wenxian & Wei, Kexiang & Qin, Bo, 2024. "Enhancing tidal current turbine efficiency through multi-biomimetic blade design features," Energy, Elsevier, vol. 293(C).
    5. Gu, Ya-jing & Lin, Yong-gang & Xu, Quan-kun & Liu, Hong-wei & Li, Wei, 2018. "Blade-pitch system for tidal current turbines with reduced variation pitch control strategy based on tidal current velocity preview," Renewable Energy, Elsevier, vol. 115(C), pages 149-158.
    6. Kim, Seung-Jun & Singh, Patrick Mark & Hyun, Beom-Soo & Lee, Young-Ho & Choi, Young-Do, 2017. "A study on the floating bridge type horizontal axis tidal current turbine for energy independent islands in Korea," Renewable Energy, Elsevier, vol. 112(C), pages 35-43.
    7. Silva, Paulo Augusto Strobel Freitas & Shinomiya, Léo Daiki & de Oliveira, Taygoara Felamingo & Vaz, Jerson Rogério Pinheiro & Amarante Mesquita, André Luiz & Brasil Junior, Antonio Cesar Pinho, 2017. "Analysis of cavitation for the optimized design of hydrokinetic turbines using BEM," Applied Energy, Elsevier, vol. 185(P2), pages 1281-1291.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Hui & Wang, LiGuo, 2023. "Numerical study on self-power supply of large marine monitoring buoys: Wave-excited vibration energy harvesting and harvester optimization," Energy, Elsevier, vol. 285(C).
    2. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Cuamba, Boaventura C. & Molander, Sverker, 2012. "Renewable ocean energy in the Western Indian Ocean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4938-4950.
    3. Chen, Weixing & Zhou, Boen & Huang, Hao & Lu, Yunfei & Li, Shaoxun & Gao, Feng, 2022. "Design, modeling and performance analysis of a deployable WEC for ocean robots," Applied Energy, Elsevier, vol. 327(C).
    4. Wang, Guohui & Yang, Yanan & Wang, Shuxin & Zhang, Hongwei & Wang, Yanhui, 2019. "Efficiency analysis and experimental validation of the ocean thermal energy conversion with phase change material for underwater vehicle," Applied Energy, Elsevier, vol. 248(C), pages 475-488.
    5. Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
    6. Arias-Gaviria, Jessica & Osorio, Andres F. & Arango-Aramburo, Santiago, 2020. "Estimating the practical potential for deep ocean water extraction in the Caribbean," Renewable Energy, Elsevier, vol. 150(C), pages 307-319.
    7. Alain Ulazia & Ander Nafarrate & Gabriel Ibarra-Berastegi & Jon Sáenz & Sheila Carreno-Madinabeitia, 2019. "The Consequences of Air Density Variations over Northeastern Scotland for Offshore Wind Energy Potential," Energies, MDPI, vol. 12(13), pages 1-18, July.
    8. Seixas, M. & Melício, R. & Mendes, V.M.F. & Couto, C., 2016. "Blade pitch control malfunction simulation in a wind energy conversion system with MPC five-level converter," Renewable Energy, Elsevier, vol. 89(C), pages 339-350.
    9. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2017. "Economic comparison of technological alternatives to harness offshore wind and wave energies," Energy, Elsevier, vol. 140(P1), pages 1121-1130.
    10. Zeyringer, Marianne & Fais, Birgit & Keppo, Ilkka & Price, James, 2018. "The potential of marine energy technologies in the UK – Evaluation from a systems perspective," Renewable Energy, Elsevier, vol. 115(C), pages 1281-1293.
    11. Dong-Hui Ko & Jaekwan Chung & Kwang-Soo Lee & Jin-Soon Park & Jin-Hak Yi, 2019. "Current Policy and Technology for Tidal Current Energy in Korea," Energies, MDPI, vol. 12(9), pages 1-15, May.
    12. Fox, Clive J. & Benjamins, Steven & Masden, Elizabeth A. & Miller, Raeanne, 2018. "Challenges and opportunities in monitoring the impacts of tidal-stream energy devices on marine vertebrates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1926-1938.
    13. Ulazia, Alain & Sáenz, Jon & Ibarra-Berastegi, Gabriel & González-Rojí, Santos J. & Carreno-Madinabeitia, Sheila, 2019. "Global estimations of wind energy potential considering seasonal air density changes," Energy, Elsevier, vol. 187(C).
    14. Bonou, Alexandra & Laurent, Alexis & Olsen, Stig I., 2016. "Life cycle assessment of onshore and offshore wind energy-from theory to application," Applied Energy, Elsevier, vol. 180(C), pages 327-337.
    15. Segura, E. & Morales, R. & Somolinos, J.A., 2018. "A strategic analysis of tidal current energy conversion systems in the European Union," Applied Energy, Elsevier, vol. 212(C), pages 527-551.
    16. Kim, Seung-Jun & Singh, Patrick Mark & Hyun, Beom-Soo & Lee, Young-Ho & Choi, Young-Do, 2017. "A study on the floating bridge type horizontal axis tidal current turbine for energy independent islands in Korea," Renewable Energy, Elsevier, vol. 112(C), pages 35-43.
    17. Li, Ningyu & Park, Hongrae & Sun, Hai & Bernitsas, Michael M., 2022. "Hydrokinetic energy conversion using flow induced oscillations of single-cylinder with large passive turbulence control," Applied Energy, Elsevier, vol. 308(C).
    18. Carrelhas, A.A.D. & Gato, L.M.C. & Henriques, J.C.C. & Falcão, A.F.O. & Varandas, J., 2019. "Test results of a 30 kW self-rectifying biradial air turbine-generator prototype," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 187-198.
    19. Sangiuliano, Stephen Joseph, 2017. "Turning of the tides: Assessing the international implementation of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 971-989.
    20. Yuquan Zhang & Zhiqiang Liu & Chengyi Li & Xuemei Wang & Yuan Zheng & Zhi Zhang & Emmanuel Fernandez-Rodriguez & Rabea Jamil Mahfoud, 2022. "Fluid–Structure Interaction Modeling of Structural Loads and Fatigue Life Analysis of Tidal Stream Turbine," Mathematics, MDPI, vol. 10(19), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:68:y:2014:i:c:p:485-493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.