IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v228y2024ics0960148124007213.html
   My bibliography  Save this article

A Full-Scale Tidal Blade Fatigue Test using the FastBlade Facility

Author

Listed:
  • Lopez Dubon, Sergio
  • Vogel, Christopher
  • Garcia Cava, David
  • Cuthill, Fergus
  • McCarthy, Edward D.
  • Ó Bradaigh, Conchur M.

Abstract

Fatigue testing of tidal turbine blades requires the application of cyclic loads without the ability to match the natural frequency of the blade due to their high stiffness and the associated thermal issues of testing composite materials at those frequencies (i.e., 18–20 Hz). To solve this, loading the blades with an auxiliary system is necessary; in most cases, a conventional hydraulic system tends to be highly energy-demanding and inefficient. A regenerative digital displacement hydraulic pump system was employed in the FastBlade fatigue testing facility, which saved up to 75 % compared to a standard hydraulic system. A series of equivalent target loads were defined using Reynolds-Averaged Navier Stokes (RANS) simulations (based on on-site collected water velocity data) and utilised in FastBlade to demonstrate an efficient way to perform fatigue testing. During the test, a series of measurements were performed on the blade response and the Fastblade test structure itself, providing novel insights into the mechanical behaviour of a blade, and enabling improved testing practice for FastBlade. Without catastrophic failure, the blade withstood the principal tidal loading for 20 years (equivalent). This test data will enable FastBlade to identify improvements to the testing procedures, i.e., control strategies, load introduction, instrumentation layout, instrument calibration, and test design.

Suggested Citation

  • Lopez Dubon, Sergio & Vogel, Christopher & Garcia Cava, David & Cuthill, Fergus & McCarthy, Edward D. & Ó Bradaigh, Conchur M., 2024. "A Full-Scale Tidal Blade Fatigue Test using the FastBlade Facility," Renewable Energy, Elsevier, vol. 228(C).
  • Handle: RePEc:eee:renene:v:228:y:2024:i:c:s0960148124007213
    DOI: 10.1016/j.renene.2024.120653
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124007213
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120653?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:228:y:2024:i:c:s0960148124007213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.