IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v194y2020ics036054421932554x.html
   My bibliography  Save this article

Effect of thermal energy storage layer porosity on performance of solar chimney power plant considering turbine pressure drop

Author

Listed:
  • Sedighi, Ali Asghar
  • Deldoost, Zeynab
  • Karambasti, Bahram Mahjoob

Abstract

Performance of a solar chimney power plant (SCPP) is numerically investigated under the effects of turbine pressure drop, solar radiation and energy storage layer porosity. The solar chimney can be constructed on the soil with various properties and porosities as energy storage layer. In this article, the effects of soil porosity on the output power and energy efficiency of SCPP are investigated to find an appropriate porosity of soli. The results show that the output power of SCPP for each solar radiation and soil porosity becomes maximum at the optimum value of the turbine pressure drop. The efficiency of SCPP decreases and the output power of turbine increases with the increase in radiation flux. The reduction in efficiency compared to the increase in output power is negligible. In terms of energy efficiency and output power, the land with less porosity and the location with the high radiation is chosen as the most suitable place for construction of solar chimney power plant. Investigation of exergy loss from solar chimney outlet demonstrates that it is an increasing function of solar radiation and decreasing function of turbine pressure drop and soil porosity.

Suggested Citation

  • Sedighi, Ali Asghar & Deldoost, Zeynab & Karambasti, Bahram Mahjoob, 2020. "Effect of thermal energy storage layer porosity on performance of solar chimney power plant considering turbine pressure drop," Energy, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:energy:v:194:y:2020:i:c:s036054421932554x
    DOI: 10.1016/j.energy.2019.116859
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421932554X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116859?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Toghraie, Davood & Karami, Amir & Afrand, Masoud & Karimipour, Arash, 2018. "Effects of geometric parameters on the performance of solar chimney power plants," Energy, Elsevier, vol. 162(C), pages 1052-1061.
    2. Hurtado, F.J. & Kaiser, A.S. & Zamora, B., 2012. "Evaluation of the influence of soil thermal inertia on the performance of a solar chimney power plant," Energy, Elsevier, vol. 47(1), pages 213-224.
    3. Choi, Young Jae & Kam, Dong Hoon & Park, Yoon Won & Jeong, Yong Hoon, 2016. "Development of analytical model for solar chimney power plant with and without water storage system," Energy, Elsevier, vol. 112(C), pages 200-207.
    4. Kasaeian, A.B. & Heidari, E. & Vatan, Sh. Nasiri, 2011. "Experimental investigation of climatic effects on the efficiency of a solar chimney pilot power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5202-5206.
    5. Hassan, Aakash & Ali, Majid & Waqas, Adeel, 2018. "Numerical investigation on performance of solar chimney power plant by varying collector slope and chimney diverging angle," Energy, Elsevier, vol. 142(C), pages 411-425.
    6. Ayadi, Ahmed & Bouabidi, Abdallah & Driss, Zied & Abid, Mohamed Salah, 2018. "Experimental and numerical analysis of the collector roof height effect on the solar chimney performance," Renewable Energy, Elsevier, vol. 115(C), pages 649-662.
    7. Jafarifar, Naeimeh & Behzadi, Mohammad Matin & Yaghini, Mohammad, 2019. "The effect of strong ambient winds on the efficiency of solar updraft power towers: A numerical case study for Orkney," Renewable Energy, Elsevier, vol. 136(C), pages 937-944.
    8. Gholamalizadeh, E. & Mansouri, S.H., 2013. "A comprehensive approach to design and improve a solar chimney power plant: A special case – Kerman project," Applied Energy, Elsevier, vol. 102(C), pages 975-982.
    9. Fadaei, Niloufar & Kasaeian, Alibakhsh & Akbarzadeh, Aliakbar & Hashemabadi, Seyed Hassan, 2018. "Experimental investigation of solar chimney with phase change material (PCM)," Renewable Energy, Elsevier, vol. 123(C), pages 26-35.
    10. Maia, C.B. & Castro Silva, J.O. & Cabezas-Gómez, L. & Hanriot, S.M. & Ferreira, A.G., 2013. "Energy and exergy analysis of the airflow inside a solar chimney," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 350-361.
    11. Gholamalizadeh, Ehsan & Kim, Man-Hoe, 2014. "Thermo-economic triple-objective optimization of a solar chimney power plant using genetic algorithms," Energy, Elsevier, vol. 70(C), pages 204-211.
    12. Mehrpooya, Mehdi & Shahsavan, Mohsen & Sharifzadeh, Mohammad Mehdi Moftakhari, 2016. "Modeling, energy and exergy analysis of solar chimney power plant-Tehran climate data case study," Energy, Elsevier, vol. 115(P1), pages 257-273.
    13. Ehsan Gholamalizadeh & Man-Hoe Kim, 2016. "Multi-Objective Optimization of a Solar Chimney Power Plant with Inclined Collector Roof Using Genetic Algorithm," Energies, MDPI, vol. 9(11), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Torkfar, Arman & Arefian, Amir & Hosseini-Abardeh, Reza & Bahrami, Mohsen, 2023. "Implementation of active and passive control strategies for power generation in a solar chimney power plant: A technical evaluation of Manzanares prototype," Renewable Energy, Elsevier, vol. 216(C).
    2. Salari, Ali & Shakibi, Hamid & Alimohammadi, Mahdieh & Naghdbishi, Ali & Goodarzi, Shadi, 2023. "A machine learning approach to optimize the performance of a combined solar chimney-photovoltaic thermal power plant," Renewable Energy, Elsevier, vol. 212(C), pages 717-737.
    3. Fallah, Seyyed Hossein & Valipour, Mohammad Sadegh, 2022. "Numerical investigation of a small scale sloped solar chimney power plant," Renewable Energy, Elsevier, vol. 183(C), pages 1-11.
    4. Pinar Mert Cuce & Erdem Cuce & Saad Alshahrani & Shaik Saboor & Harun Sen & Ibham Veza & C. Ahamed Saleel, 2022. "Performance Evaluation of Solar Chimney Power Plants with Bayburt Stone and Basalt on the Ground as Natural Energy Storage Material," Sustainability, MDPI, vol. 14(17), pages 1-14, September.
    5. Chen, Wei & Chen, Wei, 2020. "Analysis of heat transfer and flow in the solar chimney with the sieve-plate thermal storage beds packed with phase change capsules," Renewable Energy, Elsevier, vol. 157(C), pages 491-501.
    6. Arefian, Amir & Hosseini-Abardeh, Reza & Rahimi-Larki, Mohsen & Torkfar, Arman & Sarlak, Hamid, 2024. "A comprehensive analysis of time-dependent performance of a solar chimney power plant equipped with a thermal energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. Hassan Zohair Hassan, 2022. "Transient Analysis of a Solar Chimney Power Plant Integrated with a Solid-Sorption Cooling System for Combined Power and Chilled Water Production," Energies, MDPI, vol. 15(18), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nirmalendu Biswas & Dipak Kumar Mandal & Sharmistha Bose & Nirmal K. Manna & Ali Cemal Benim, 2023. "Experimental Treatment of Solar Chimney Power Plant—A Comprehensive Review," Energies, MDPI, vol. 16(17), pages 1-41, August.
    2. Das, Pritam & Chandramohan, V.P., 2019. "Computational study on the effect of collector cover inclination angle, absorber plate diameter and chimney height on flow and performance parameters of solar updraft tower (SUT) plant," Energy, Elsevier, vol. 172(C), pages 366-379.
    3. Ming, Tingzhen & Wu, Yongjia & de_Richter, Renaud K. & Liu, Wei & Sherif, S.A., 2017. "Solar updraft power plant system: A brief review and a case study on a new system with radial partition walls in its collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 472-487.
    4. Maia, Cristiana Brasil & Ferreira, André Guimarães & Cabezas-Gómez, Luben & de Oliveira Castro Silva, Janaína & de Morais Hanriot, Sérgio, 2017. "Thermodynamic analysis of the drying process of bananas in a small-scale solar updraft tower in Brazil," Renewable Energy, Elsevier, vol. 114(PB), pages 1005-1012.
    5. Murena, Fabio & Gaggiano, Imma & Mele, Benedetto, 2022. "Fluid dynamic performances of a solar chimney plant: Analysis of experimental data and CFD modelling," Energy, Elsevier, vol. 249(C).
    6. Maia, Cristiana Brasil & Castro Silva, Janaína de Oliveira, 2022. "Thermodynamic assessment of a small-scale solar chimney," Renewable Energy, Elsevier, vol. 186(C), pages 35-50.
    7. Singh, Ajeet Pratap & Kumar, Amit & Akshayveer, & Singh, O.P., 2021. "A novel concept of integrating bell-mouth inlet in converging-diverging solar chimney power plant," Renewable Energy, Elsevier, vol. 169(C), pages 318-334.
    8. Ehsan Gholamalizadeh & Jae Dong Chung, 2017. "A Comparative Study of CFD Models of a Real Wind Turbine in Solar Chimney Power Plants," Energies, MDPI, vol. 10(10), pages 1-11, October.
    9. Kasaeian, A.B. & Molana, Sh. & Rahmani, K. & Wen, D., 2017. "A review on solar chimney systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 954-987.
    10. Praveen, Vivek & Das, Pritam & Chandramohan, V.P., 2021. "A novel concept of introducing a fillet at the chimney base of solar updraft tower plant and thereby improving the performance: A numerical study," Renewable Energy, Elsevier, vol. 179(C), pages 37-46.
    11. Xiong, Hanbing & Ming, Tingzhen & Shi, Tianhao & Wu, Yongjia & Li, Wei & de Richter, Renaud & Zhou, Nan, 2024. "Numerical investigation on performance of solar chimney power plant with three wind resistant structures," Energy, Elsevier, vol. 297(C).
    12. Hu, Siyang & Leung, Dennis Y.C. & Chan, John C.Y., 2017. "Impact of the geometry of divergent chimneys on the power output of a solar chimney power plant," Energy, Elsevier, vol. 120(C), pages 1-11.
    13. Arijit A. Ganguli & Sagar S. Deshpande & Aniruddha B. Pandit, 2021. "CFD Simulations for Performance Enhancement of a Solar Chimney Power Plant (SCPP) and Techno-Economic Feasibility for a 5 MW SCPP in an Indian Context," Energies, MDPI, vol. 14(11), pages 1-28, June.
    14. Abedi, Mahyar & Tan, Xu & Klausner, James F. & Bénard, Andre, 2023. "Solar desalination chimneys: Investigation on the feasibility of integrating solar chimneys with humidification–dehumidification systems," Renewable Energy, Elsevier, vol. 202(C), pages 88-102.
    15. Vargas-López, R. & Xamán, J. & Hernández-Pérez, I. & Arce, J. & Zavala-Guillén, I. & Jiménez, M.J. & Heras, M.R., 2019. "Mathematical models of solar chimneys with a phase change material for ventilation of buildings: A review using global energy balance," Energy, Elsevier, vol. 170(C), pages 683-708.
    16. Toghraie, Davood & Karami, Amir & Afrand, Masoud & Karimipour, Arash, 2018. "Effects of geometric parameters on the performance of solar chimney power plants," Energy, Elsevier, vol. 162(C), pages 1052-1061.
    17. Cristiana Brasil Maia & Janaína de Oliveira Castro Silva, 2022. "CFD Analysis of a Small-Scale Solar Chimney Exposed to Ambient Crosswind," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    18. Seungjin Lee & Yoon Seok Kim & Joong Yull Park, 2018. "Numerical Investigation on the Effects of Baffles with Various Thermal and Geometrical Conditions on Thermo-Fluid Dynamics and Kinetic Power of a Solar Updraft Tower," Energies, MDPI, vol. 11(9), pages 1-14, August.
    19. Setareh, Milad, 2021. "Comprehensive mathematical study on solar chimney powerplant," Renewable Energy, Elsevier, vol. 175(C), pages 470-485.
    20. Hu, Siyang & Leung, Dennis Y.C. & Chan, John C.Y., 2017. "Numerical modelling and comparison of the performance of diffuser-type solar chimneys for power generation," Applied Energy, Elsevier, vol. 204(C), pages 948-957.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:194:y:2020:i:c:s036054421932554x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.