IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v14y2010i5p1410-1418.html
   My bibliography  Save this article

Thermo-hydrodynamic aspect analysis of flows in solar chimney power plants--A case study

Author

Listed:
  • Chergui, Toufik
  • Larbi, Salah
  • Bouhdjar, Amor

Abstract

The purpose of the work presented in this study is related to heat transfer and airflow modelling analysis in solar chimneys, according to some dominant parameters. A typical case of application is given in this study. It consists in analyzing a natural laminar convective heat transfer problem taking place in a chimney. Heat transfer and fluid dynamic aspects of the airflow, through an axis symmetric system in a dimensionless form, with well defined boundary conditions is thus examined. Results are related to the temperature distribution and the velocity field in the chimney and in the collector, determined by solving the energy equation, and the Navier-Stokes equations, using finite volume method. The numerical code based on this modelling is validated through the Vahl Davis benchmark solution for natural convection and to other authors for other cases.

Suggested Citation

  • Chergui, Toufik & Larbi, Salah & Bouhdjar, Amor, 2010. "Thermo-hydrodynamic aspect analysis of flows in solar chimney power plants--A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1410-1418, June.
  • Handle: RePEc:eee:rensus:v:14:y:2010:i:5:p:1410-1418
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(10)00025-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Xinping & Yang, Jiakuan & Wang, Fen & Xiao, Bo, 2009. "Economic analysis of power generation from floating solar chimney power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 736-749, May.
    2. Larbi, Salah & Bouhdjar, Amor & Chergui, Toufik, 2010. "Performance analysis of a solar chimney power plant in the southwestern region of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 470-477, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. RahimiLarki, Mohsen & Abardeh, Reza Hosseini & Rahimzadeh, Hassan & Sarlak, Hamid, 2021. "Performance analysis of a laboratory-scale tilted solar chimney system exposed to ambient crosswind," Renewable Energy, Elsevier, vol. 164(C), pages 1156-1170.
    2. Gholamalizadeh, Ehsan & Kim, Man-Hoe, 2014. "Three-dimensional CFD analysis for simulating the greenhouse effect in solar chimney power plants using a two-band radiation model," Renewable Energy, Elsevier, vol. 63(C), pages 498-506.
    3. Gholamalizadeh, Ehsan & Kim, Man-Hoe, 2016. "CFD (computational fluid dynamics) analysis of a solar-chimney power plant with inclined collector roof," Energy, Elsevier, vol. 107(C), pages 661-667.
    4. Zhou, Xinping & Wang, Fang & Ochieng, Reccab M., 2010. "A review of solar chimney power technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2315-2338, October.
    5. Maia, C.B. & Castro Silva, J.O. & Cabezas-Gómez, L. & Hanriot, S.M. & Ferreira, A.G., 2013. "Energy and exergy analysis of the airflow inside a solar chimney," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 350-361.
    6. Gholamalizadeh, Ehsan & Kim, Man-Hoe, 2014. "Thermo-economic triple-objective optimization of a solar chimney power plant using genetic algorithms," Energy, Elsevier, vol. 70(C), pages 204-211.
    7. Mehrpooya, Mehdi & Shahsavan, Mohsen & Sharifzadeh, Mohammad Mehdi Moftakhari, 2016. "Modeling, energy and exergy analysis of solar chimney power plant-Tehran climate data case study," Energy, Elsevier, vol. 115(P1), pages 257-273.
    8. Emad Abdelsalam & Fares Almomani & Feras Kafiah & Eyad Almaitta & Muhammad Tawalbeh & Asma Khasawneh & Dareen Habash & Abdullah Omar & Malek Alkasrawi, 2021. "A New Sustainable and Novel Hybrid Solar Chimney Power Plant Design for Power Generation and Seawater Desalination," Sustainability, MDPI, vol. 13(21), pages 1-24, November.
    9. Asnaghi, A. & Ladjevardi, S.M., 2012. "Solar chimney power plant performance in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3383-3390.
    10. Zygmunt Lipnicki & Marta Gortych & Anna Staszczuk & Tadeusz Kuczyński & Piotr Grabas, 2019. "Analytical and Experimental Investigation of the Solar Chimney System," Energies, MDPI, vol. 12(11), pages 1-13, May.
    11. de_Richter, Renaud Kiesgen & Ming, Tingzhen & Caillol, Sylvain, 2013. "Fighting global warming by photocatalytic reduction of CO2 using giant photocatalytic reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 82-106.
    12. Ghalamchi, Mehran & Kasaeian, Alibakhsh & Ghalamchi, Mehrdad, 2015. "Experimental study of geometrical and climate effects on the performance of a small solar chimney," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 425-431.
    13. Kasaeian, A.B. & Molana, Sh. & Rahmani, K. & Wen, D., 2017. "A review on solar chimney systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 954-987.
    14. Ming, Tingzhen & Wang, Xinjiang & de Richter, Renaud Kiesgen & Liu, Wei & Wu, Tianhua & Pan, Yuan, 2012. "Numerical analysis on the influence of ambient crosswind on the performance of solar updraft power plant system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5567-5583.
    15. Abdelsalam, Emad & Darwish, Omar & Karajeh, Ola & Almomani, Fares & Darweesh, Dirar & Kiswani, Sanad & Omar, Abdullah & Alkisrawi, Malek, 2022. "A classifier to detect best mode for Solar Chimney Power Plant system," Renewable Energy, Elsevier, vol. 197(C), pages 244-256.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Xinping & Wang, Fang & Ochieng, Reccab M., 2010. "A review of solar chimney power technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2315-2338, October.
    2. A Jameei & P Akbarzadeh & H Zolfagharzadeh & SR Eghbali, 2019. "Numerical study of the influence of geometric form of chimney on the performance of a solar updraft tower power plant," Energy & Environment, , vol. 30(4), pages 685-706, June.
    3. Ming, Tingzhen & Wang, Xinjiang & de Richter, Renaud Kiesgen & Liu, Wei & Wu, Tianhua & Pan, Yuan, 2012. "Numerical analysis on the influence of ambient crosswind on the performance of solar updraft power plant system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5567-5583.
    4. Zhou, Xinping & Wang, Fang & Fan, Jian & Ochieng, Reccab M., 2010. "Performance of solar chimney power plant in Qinghai-Tibet Plateau," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2249-2255, October.
    5. Kasaeian, A.B. & Molana, Sh. & Rahmani, K. & Wen, D., 2017. "A review on solar chimney systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 954-987.
    6. Aragonés-Beltrán, Pablo & Chaparro-González, Fidel & Pastor-Ferrando, Juan-Pascual & Pla-Rubio, Andrea, 2014. "An AHP (Analytic Hierarchy Process)/ANP (Analytic Network Process)-based multi-criteria decision approach for the selection of solar-thermal power plant investment projects," Energy, Elsevier, vol. 66(C), pages 222-238.
    7. Ghalamchi, Mehran & Kasaeian, Alibakhsh & Ghalamchi, Mehrdad, 2015. "Experimental study of geometrical and climate effects on the performance of a small solar chimney," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 425-431.
    8. de_Richter, Renaud Kiesgen & Ming, Tingzhen & Caillol, Sylvain, 2013. "Fighting global warming by photocatalytic reduction of CO2 using giant photocatalytic reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 82-106.
    9. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    10. Hu, Siyang & Leung, Dennis Y.C. & Chan, John C.Y., 2017. "Impact of the geometry of divergent chimneys on the power output of a solar chimney power plant," Energy, Elsevier, vol. 120(C), pages 1-11.
    11. Ming, Tingzhen & Wu, Yongjia & de_Richter, Renaud K. & Liu, Wei & Sherif, S.A., 2017. "Solar updraft power plant system: A brief review and a case study on a new system with radial partition walls in its collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 472-487.
    12. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.
    13. Okoye, Chiemeka Onyeka & Taylan, Onur, 2017. "Performance analysis of a solar chimney power plant for rural areas in Nigeria," Renewable Energy, Elsevier, vol. 104(C), pages 96-108.
    14. Cao, Fei & Yang, Tian & Liu, Qingjun & Zhu, Tianyu & Li, Huashan & Zhao, Liang, 2017. "Design and simulation of a solar double-chimney power plant," Renewable Energy, Elsevier, vol. 113(C), pages 764-773.
    15. Arijit A. Ganguli & Sagar S. Deshpande & Aniruddha B. Pandit, 2021. "CFD Simulations for Performance Enhancement of a Solar Chimney Power Plant (SCPP) and Techno-Economic Feasibility for a 5 MW SCPP in an Indian Context," Energies, MDPI, vol. 14(11), pages 1-28, June.
    16. Nikola Mišnić & Bojan Pejović & Jelena Jovović & Sunčica Rogić & Vladimir Đurišić, 2022. "The Economic Viability of PV Power Plant Based on a Neural Network Model of Electricity Prices Forecast: A Case of a Developing Market," Energies, MDPI, vol. 15(17), pages 1-14, August.
    17. Habibollahzade, Ali, 2019. "Employing photovoltaic/thermal panels as a solar chimney roof: 3E analyses and multi-objective optimization," Energy, Elsevier, vol. 166(C), pages 118-130.
    18. de Doile, Gabriel Nasser Doyle & Rotella Junior, Paulo & Rocha, Luiz Célio Souza & Janda, Karel & Aquila, Giancarlo & Peruchi, Rogério Santana & Balestrassi, Pedro Paulo, 2022. "Feasibility of hybrid wind and photovoltaic distributed generation and battery energy storage systems under techno-economic regulation," Renewable Energy, Elsevier, vol. 195(C), pages 1310-1323.
    19. Attig-Bahar, F. & Guellouz, M.S. & Sahraoui, M. & Kaddeche, S., 2021. "Economic analysis of a 1 MW solar chimney power plant in Tozeur, Tunisia," Renewable Energy, Elsevier, vol. 178(C), pages 456-465.
    20. Mehdipour, R. & Golzardi, S. & Baniamerian, Z., 2020. "Experimental justification of poor thermal and flow performance of solar chimney by an innovative indoor experimental setup," Renewable Energy, Elsevier, vol. 157(C), pages 1089-1101.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:14:y:2010:i:5:p:1410-1418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.