IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6235-d647357.html
   My bibliography  Save this article

An Innovative Design of a Solar Double-Chimney Power Plant for Electricity Generation

Author

Listed:
  • Emad Abdelsalam

    (School of Engineering Technology, Al Hussein Technical University, Amman 11831, Jordan)

  • Feras Kafiah

    (School of Engineering Technology, Al Hussein Technical University, Amman 11831, Jordan)

  • Fares Almomani

    (Chemical Engineering Department, Qatar University, Doha 2713, Qatar)

  • Muhammad Tawalbeh

    (Sustainable and Renewable Energy Engineering Department (SREE), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates)

  • Sanad Kiswani

    (School of Engineering Technology, Al Hussein Technical University, Amman 11831, Jordan)

  • Asma Khasawneh

    (School of Engineering Technology, Al Hussein Technical University, Amman 11831, Jordan)

  • Dana Ibrahim

    (School of Engineering Technology, Al Hussein Technical University, Amman 11831, Jordan)

  • Malek Alkasrawi

    (Department of Chemistry, University of Wisconsin Parkside, Kenosha, WI 53141, USA)

Abstract

The present work involves a new and novel upgrading design to the classical solar chimney power plant (SCPP) structure. The SCPP design was modified by adding a co-centric secondary external chimney to the SCPP structure to enhance energy production. In the new improved design, named the solar double-chimney power plant (SDCPP), the internal chimney, operates like a traditional SCPP to produce electricity during the daytime whereas the secondary external chimney operates as 10 cooling towers (CT) in a series. Each CT is equipped with a turbine and water sprinklers for further energy production. The new design offers the operation of the SCPP during the day and the continuous operation of the CT (day-and-night). A mathematical model that includes the energy and mass balance equations of the system was built using MATLAB. The SDCPP system produced up to 993 MWh of electrical energy, which is 2.6 times higher than the traditional SCPP (377 MWh). The new design configuration achieved a percentage of thermal efficiency (%η th ) of 1.6%, which is 200 times greater than the SCPP. The economic assessment of the new system revealed a 50% reduction in the localized cost of energy (LCOE) compared with traditional SCPP. The key advantage of the new design is related to the use of low-cost material in constructing the secondary chimney to reduce the fixed capital cost and prompt the economic feasibility of the system. Overall, the proposed SDCPP offers a feasible and economic solution to produce electricity and to potentially reduce greenhouse gas emissions.

Suggested Citation

  • Emad Abdelsalam & Feras Kafiah & Fares Almomani & Muhammad Tawalbeh & Sanad Kiswani & Asma Khasawneh & Dana Ibrahim & Malek Alkasrawi, 2021. "An Innovative Design of a Solar Double-Chimney Power Plant for Electricity Generation," Energies, MDPI, vol. 14(19), pages 1-21, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6235-:d:647357
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6235/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6235/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Okoye, Chiemeka Onyeka & Taylan, Onur, 2017. "Performance analysis of a solar chimney power plant for rural areas in Nigeria," Renewable Energy, Elsevier, vol. 104(C), pages 96-108.
    2. Li, Jing-yin & Guo, Peng-hua & Wang, Yuan, 2012. "Effects of collector radius and chimney height on power output of a solar chimney power plant with turbines," Renewable Energy, Elsevier, vol. 47(C), pages 21-28.
    3. Hamdan, Mohammad O., 2011. "Analysis of a solar chimney power plant in the Arabian Gulf region," Renewable Energy, Elsevier, vol. 36(10), pages 2593-2598.
    4. Xu, Yangyang & Zhou, Xinping, 2019. "Performance of a modified solar chimney power plant for power generation and vegetation," Energy, Elsevier, vol. 171(C), pages 502-509.
    5. Asnaghi, A. & Ladjevardi, S.M., 2012. "Solar chimney power plant performance in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3383-3390.
    6. Arce, J. & Jiménez, M.J. & Guzmán, J.D. & Heras, M.R. & Alvarez, G. & Xamán, J., 2009. "Experimental study for natural ventilation on a solar chimney," Renewable Energy, Elsevier, vol. 34(12), pages 2928-2934.
    7. Emad Abdelsalam & Feras Kafiah & Malek Alkasrawi & Ismael Al-Hinti & Ahmad Azzam, 2020. "Economic Study of Solar Chimney Power-Water Distillation Plant (SCPWDP)," Energies, MDPI, vol. 13(11), pages 1-14, June.
    8. Zandian, Arash & Ashjaee, Mehdi, 2013. "The thermal efficiency improvement of a steam Rankine cycle by innovative design of a hybrid cooling tower and a solar chimney concept," Renewable Energy, Elsevier, vol. 51(C), pages 465-473.
    9. Nizetic, S. & Ninic, N. & Klarin, B., 2008. "Analysis and feasibility of implementing solar chimney power plants in the Mediterranean region," Energy, Elsevier, vol. 33(11), pages 1680-1690.
    10. Salameh, Tareq & Ghenai, Chaouki & Merabet, Adel & Alkasrawi, Malek, 2020. "Techno-economical optimization of an integrated stand-alone hybrid solar PV tracking and diesel generator power system in Khorfakkan, United Arab Emirates," Energy, Elsevier, vol. 190(C).
    11. Nasraoui, Haythem & Driss, Zied & Kchaou, Hedi, 2020. "Novel collector design for enhancing the performance of solar chimney power plant," Renewable Energy, Elsevier, vol. 145(C), pages 1658-1671.
    12. Koonsrisuk, Atit & Chitsomboon, Tawit, 2013. "Mathematical modeling of solar chimney power plants," Energy, Elsevier, vol. 51(C), pages 314-322.
    13. Khan, Meer A.M. & Rehman, S. & Al-Sulaiman, Fahad A., 2018. "A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 456-477.
    14. Zhou, Xinping & Wang, Fang & Ochieng, Reccab M., 2010. "A review of solar chimney power technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2315-2338, October.
    15. Tingzhen, Ming & Wei, Liu & Guoling, Xu & Yanbin, Xiong & Xuhu, Guan & Yuan, Pan, 2008. "Numerical simulation of the solar chimney power plant systems coupled with turbine," Renewable Energy, Elsevier, vol. 33(5), pages 897-905.
    16. Larbi, Salah & Bouhdjar, Amor & Chergui, Toufik, 2010. "Performance analysis of a solar chimney power plant in the southwestern region of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 470-477, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hassan Zohair Hassan, 2023. "Performance Enhancement of the Basic Solar Chimney Power Plant Integrated with an Adsorption Cooling System with Heat Recovery from the Condenser," Energies, MDPI, vol. 17(1), pages 1-35, December.
    2. Emad Abdelsalam & Fares Almomani & Shadwa Ibrahim & Feras Kafiah & Mohammad Jamjoum & Malek Alkasrawi, 2023. "A Novel Design of a Hybrid Solar Double-Chimney Power Plant for Generating Electricity and Distilled Water," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    3. Almaita, Eyad & Abdelsalam, Emad & Almomani, Fares & Nawafah, Hamza & Kassem, Fadwa & Alshkoor, Saleh & Shloul, Maan, 2023. "Impact study of integrating solar double chimney power plant into electrical grid," Energy, Elsevier, vol. 265(C).
    4. Nirmalendu Biswas & Dipak Kumar Mandal & Sharmistha Bose & Nirmal K. Manna & Ali Cemal Benim, 2023. "Experimental Treatment of Solar Chimney Power Plant—A Comprehensive Review," Energies, MDPI, vol. 16(17), pages 1-41, August.
    5. Hassan Zohair Hassan, 2022. "Transient Analysis of a Solar Chimney Power Plant Integrated with a Solid-Sorption Cooling System for Combined Power and Chilled Water Production," Energies, MDPI, vol. 15(18), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emad Abdelsalam & Fares Almomani & Feras Kafiah & Eyad Almaitta & Muhammad Tawalbeh & Asma Khasawneh & Dareen Habash & Abdullah Omar & Malek Alkasrawi, 2021. "A New Sustainable and Novel Hybrid Solar Chimney Power Plant Design for Power Generation and Seawater Desalination," Sustainability, MDPI, vol. 13(21), pages 1-24, November.
    2. Emad Abdelsalam & Feras Kafiah & Malek Alkasrawi & Ismael Al-Hinti & Ahmad Azzam, 2020. "Economic Study of Solar Chimney Power-Water Distillation Plant (SCPWDP)," Energies, MDPI, vol. 13(11), pages 1-14, June.
    3. Kasaeian, A.B. & Molana, Sh. & Rahmani, K. & Wen, D., 2017. "A review on solar chimney systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 954-987.
    4. Maia, C.B. & Castro Silva, J.O. & Cabezas-Gómez, L. & Hanriot, S.M. & Ferreira, A.G., 2013. "Energy and exergy analysis of the airflow inside a solar chimney," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 350-361.
    5. Attig-Bahar, F. & Guellouz, M.S. & Sahraoui, M. & Kaddeche, S., 2021. "Economic analysis of a 1 MW solar chimney power plant in Tozeur, Tunisia," Renewable Energy, Elsevier, vol. 178(C), pages 456-465.
    6. Cao, Fei & Liu, Qingjun & Yang, Tian & Zhu, Tianyu & Bai, Jianbo & Zhao, Liang, 2018. "Full-year simulation of solar chimney power plants in Northwest China," Renewable Energy, Elsevier, vol. 119(C), pages 421-428.
    7. Ghalamchi, Mehran & Kasaeian, Alibakhsh & Ghalamchi, Mehrdad, 2015. "Experimental study of geometrical and climate effects on the performance of a small solar chimney," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 425-431.
    8. Ming, Tingzhen & Wu, Yongjia & de_Richter, Renaud K. & Liu, Wei & Sherif, S.A., 2017. "Solar updraft power plant system: A brief review and a case study on a new system with radial partition walls in its collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 472-487.
    9. Okoye, Chiemeka Onyeka & Taylan, Onur, 2017. "Performance analysis of a solar chimney power plant for rural areas in Nigeria," Renewable Energy, Elsevier, vol. 104(C), pages 96-108.
    10. Cao, Fei & Yang, Tian & Liu, Qingjun & Zhu, Tianyu & Li, Huashan & Zhao, Liang, 2017. "Design and simulation of a solar double-chimney power plant," Renewable Energy, Elsevier, vol. 113(C), pages 764-773.
    11. Ming, Tingzhen & Wang, Xinjiang & de Richter, Renaud Kiesgen & Liu, Wei & Wu, Tianhua & Pan, Yuan, 2012. "Numerical analysis on the influence of ambient crosswind on the performance of solar updraft power plant system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5567-5583.
    12. Milani Shirvan, Kamel & Mirzakhanlari, Soroush & Mamourian, Mojtaba & Kalogirou, Soteris A., 2017. "Optimization of effective parameters on solar updraft tower to achieve potential maximum power output: A sensitivity analysis and numerical simulation," Applied Energy, Elsevier, vol. 195(C), pages 725-737.
    13. Zhou, Xinping & Bernardes, Marco A. dos S. & Ochieng, Reccab M., 2012. "Influence of atmospheric cross flow on solar updraft tower inflow," Energy, Elsevier, vol. 42(1), pages 393-400.
    14. Ehsan Gholamalizadeh & Jae Dong Chung, 2017. "A Comparative Study of CFD Models of a Real Wind Turbine in Solar Chimney Power Plants," Energies, MDPI, vol. 10(10), pages 1-11, October.
    15. Xu, Yangyang & Zhou, Xinping, 2019. "Performance of a modified solar chimney power plant for power generation and vegetation," Energy, Elsevier, vol. 171(C), pages 502-509.
    16. de_Richter, Renaud Kiesgen & Ming, Tingzhen & Caillol, Sylvain, 2013. "Fighting global warming by photocatalytic reduction of CO2 using giant photocatalytic reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 82-106.
    17. Zygmunt Lipnicki & Marta Gortych & Anna Staszczuk & Tadeusz Kuczyński & Piotr Grabas, 2019. "Analytical and Experimental Investigation of the Solar Chimney System," Energies, MDPI, vol. 12(11), pages 1-13, May.
    18. Emad Abdelsalam & Fares Almomani & Shadwa Ibrahim & Feras Kafiah & Mohammad Jamjoum & Malek Alkasrawi, 2023. "A Novel Design of a Hybrid Solar Double-Chimney Power Plant for Generating Electricity and Distilled Water," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    19. Shi, Long & Zhang, Guomin & Yang, Wei & Huang, Dongmei & Cheng, Xudong & Setunge, Sujeeva, 2018. "Determining the influencing factors on the performance of solar chimney in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 223-238.
    20. Tawalbeh, Muhammad & Mohammed, Shima & Alnaqbi, Aaesha & Alshehhi, Shouq & Al-Othman, Amani, 2023. "Analysis for hybrid photovoltaic/solar chimney seawater desalination plant: A CFD simulation in Sharjah, United Arab Emirates," Renewable Energy, Elsevier, vol. 202(C), pages 667-685.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6235-:d:647357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.