Exploiting demand-side flexibility: State-of-the-art, open issues and social perspective
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2022.112605
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Newsham, Guy R. & Birt, Benjamin J. & Rowlands, Ian H., 2011. "A comparison of four methods to evaluate the effect of a utility residential air-conditioner load control program on peak electricity use," Energy Policy, Elsevier, vol. 39(10), pages 6376-6389, October.
- Patteeuw, Dieter & Henze, Gregor P. & Helsen, Lieve, 2016. "Comparison of load shifting incentives for low-energy buildings with heat pumps to attain grid flexibility benefits," Applied Energy, Elsevier, vol. 167(C), pages 80-92.
- Pallonetto, Fabiano & De Rosa, Mattia & D’Ettorre, Francesco & Finn, Donal P., 2020. "On the assessment and control optimisation of demand response programs in residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
- Poullikkas, Andreas, 2013. "A comparative overview of large-scale battery systems for electricity storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 778-788.
- Diego Mejía-Giraldo & Gregorio Velásquez-Gomez & Nicolás Muñoz-Galeano & Juan Bernardo Cano-Quintero & Santiago Lemos-Cano, 2019. "A BESS Sizing Strategy for Primary Frequency Regulation Support of Solar Photovoltaic Plants," Energies, MDPI, vol. 12(2), pages 1-16, January.
- Clauß, John & Stinner, Sebastian & Sartori, Igor & Georges, Laurent, 2019. "Predictive rule-based control to activate the energy flexibility of Norwegian residential buildings: Case of an air-source heat pump and direct electric heating," Applied Energy, Elsevier, vol. 237(C), pages 500-518.
- Imani, Mahmood Hosseini & Ghadi, M. Jabbari & Ghavidel, Sahand & Li, Li, 2018. "Demand Response Modeling in Microgrid Operation: a Review and Application for Incentive-Based and Time-Based Programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 486-499.
- Dengiz, Thomas & Jochem, Patrick & Fichtner, Wolf, 2019. "Demand response with heuristic control strategies for modulating heat pumps," Applied Energy, Elsevier, vol. 238(C), pages 1346-1360.
- Chong Cao & Zhouquan Wu & Bo Chen, 2020. "Electric Vehicle–Grid Integration with Voltage Regulation in Radial Distribution Networks," Energies, MDPI, vol. 13(7), pages 1-18, April.
- Bode, Josh L. & Sullivan, Michael J. & Berghman, Dries & Eto, Joseph H., 2013. "Incorporating residential AC load control into ancillary service markets: Measurement and settlement," Energy Policy, Elsevier, vol. 56(C), pages 175-185.
- Lu, Xiaoxing & Li, Kangping & Xu, Hanchen & Wang, Fei & Zhou, Zhenyu & Zhang, Yagang, 2020. "Fundamentals and business model for resource aggregator of demand response in electricity markets," Energy, Elsevier, vol. 204(C).
- El-Bidairi, Kutaiba S. & Nguyen, Hung Duc & Mahmoud, Thair S. & Jayasinghe, S.D.G. & Guerrero, Josep M., 2020. "Optimal sizing of Battery Energy Storage Systems for dynamic frequency control in an islanded microgrid: A case study of Flinders Island, Australia," Energy, Elsevier, vol. 195(C).
- O׳Connell, Niamh & Pinson, Pierre & Madsen, Henrik & O׳Malley, Mark, 2014. "Benefits and challenges of electrical demand response: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 686-699.
- Hector Beltran & Sam Harrison & Agustí Egea-Àlvarez & Lie Xu, 2020. "Techno-Economic Assessment of Energy Storage Technologies for Inertia Response and Frequency Support from Wind Farms," Energies, MDPI, vol. 13(13), pages 1-21, July.
- Ziras, Charalampos & Heinrich, Carsten & Pertl, Michael & Bindner, Henrik W., 2019. "Experimental flexibility identification of aggregated residential thermal loads using behind-the-meter data," Applied Energy, Elsevier, vol. 242(C), pages 1407-1421.
- Muench, Stefan & Thuss, Sebastian & Guenther, Edeltraud, 2014. "What hampers energy system transformations? The case of smart grids," Energy Policy, Elsevier, vol. 73(C), pages 80-92.
- Fischer, David & Bernhardt, Josef & Madani, Hatef & Wittwer, Christof, 2017. "Comparison of control approaches for variable speed air source heat pumps considering time variable electricity prices and PV," Applied Energy, Elsevier, vol. 204(C), pages 93-105.
- Parrish, Bryony & Heptonstall, Phil & Gross, Rob & Sovacool, Benjamin K., 2020. "A systematic review of motivations, enablers and barriers for consumer engagement with residential demand response," Energy Policy, Elsevier, vol. 138(C).
- Sun, Mingyang & Djapic, Predrag & Aunedi, Marko & Pudjianto, Danny & Strbac, Goran, 2019. "Benefits of smart control of hybrid heat pumps: An analysis of field trial data," Applied Energy, Elsevier, vol. 247(C), pages 525-536.
- Müller, F.L. & Jansen, B., 2019. "Large-scale demonstration of precise demand response provided by residential heat pumps," Applied Energy, Elsevier, vol. 239(C), pages 836-845.
- Gunkel, Philipp Andreas & Bergaentzlé, Claire & Græsted Jensen, Ida & Scheller, Fabian, 2020. "From passive to active: Flexibility from electric vehicles in the context of transmission system development," Applied Energy, Elsevier, vol. 277(C).
- Nicolson, Moira L. & Fell, Michael J. & Huebner, Gesche M., 2018. "Consumer demand for time of use electricity tariffs: A systematized review of the empirical evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 276-289.
- Correia-da-Silva, João & Soares, Isabel & Fernández, Raquel, 2020. "Impact of dynamic pricing on investment in renewables," Energy, Elsevier, vol. 202(C).
- Junker, Rune Grønborg & Azar, Armin Ghasem & Lopes, Rui Amaral & Lindberg, Karen Byskov & Reynders, Glenn & Relan, Rishi & Madsen, Henrik, 2018. "Characterizing the energy flexibility of buildings and districts," Applied Energy, Elsevier, vol. 225(C), pages 175-182.
- Torriti, Jacopo & Hassan, Mohamed G. & Leach, Matthew, 2010. "Demand response experience in Europe: Policies, programmes and implementation," Energy, Elsevier, vol. 35(4), pages 1575-1583.
- Lee, Eunjung & Lee, Kyungeun & Lee, Hyoseop & Kim, Euncheol & Rhee, Wonjong, 2019. "Defining virtual control group to improve customer baseline load calculation of residential demand response," Applied Energy, Elsevier, vol. 250(C), pages 946-958.
- Kumar, Abhishek & Meena, Nand K. & Singh, Arvind R. & Deng, Yan & He, Xiangning & Bansal, R.C. & Kumar, Praveen, 2019. "Strategic integration of battery energy storage systems with the provision of distributed ancillary services in active distribution systems," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Darby, Sarah J. & McKenna, Eoghan, 2012. "Social implications of residential demand response in cool temperate climates," Energy Policy, Elsevier, vol. 49(C), pages 759-769.
- Fischer, David & Wolf, Tobias & Wapler, Jeannette & Hollinger, Raphael & Madani, Hatef, 2017. "Model-based flexibility assessment of a residential heat pump pool," Energy, Elsevier, vol. 118(C), pages 853-864.
- Renaldi, R. & Kiprakis, A. & Friedrich, D., 2017. "An optimisation framework for thermal energy storage integration in a residential heat pump heating system," Applied Energy, Elsevier, vol. 186(P3), pages 520-529.
- Engels, Jonas & Claessens, Bert & Deconinck, Geert, 2019. "Techno-economic analysis and optimal control of battery storage for frequency control services, applied to the German market," Applied Energy, Elsevier, vol. 242(C), pages 1036-1049.
- Alimohammadisagvand, Behrang & Jokisalo, Juha & Sirén, Kai, 2018. "Comparison of four rule-based demand response control algorithms in an electrically and heat pump-heated residential building," Applied Energy, Elsevier, vol. 209(C), pages 167-179.
- Baeten, Brecht & Rogiers, Frederik & Helsen, Lieve, 2017. "Reduction of heat pump induced peak electricity use and required generation capacity through thermal energy storage and demand response," Applied Energy, Elsevier, vol. 195(C), pages 184-195.
- Alessia Arteconi & Fabio Polonara, 2018. "Assessing the Demand Side Management Potential and the Energy Flexibility of Heat Pumps in Buildings," Energies, MDPI, vol. 11(7), pages 1-19, July.
- Philipp Andreas Gunkel & Claire Bergaentzl'e & Ida Gr{ae}sted Jensen & Fabian Scheller, 2020. "From passive to active: Flexibility from electric vehicles in the context of transmission system development," Papers 2011.05830, arXiv.org.
- Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
- Finck, Christian & Li, Rongling & Zeiler, Wim, 2020. "Optimal control of demand flexibility under real-time pricing for heating systems in buildings: A real-life demonstration," Applied Energy, Elsevier, vol. 263(C).
- Bert Willems & Juulia Zhou, 2020. "The Clean Energy Package and Demand Response: Setting Correct Incentives," Energies, MDPI, vol. 13(21), pages 1-19, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Manfren, Massimiliano & Nastasi, Benedetto, 2023. "Interpretable data-driven building load profiles modelling for Measurement and Verification 2.0," Energy, Elsevier, vol. 283(C).
- Palacios-Garcia, Emilio J. & Carpent, Xavier & Bos, Joppe W. & Deconinck, Geert, 2022. "Efficient privacy-preserving aggregation for demand side management of residential loads," Applied Energy, Elsevier, vol. 328(C).
- Zhou, Yuekuan & Zheng, Siqian & Hensen, Jan L.M., 2024. "Machine learning-based digital district heating/cooling with renewable integrations and advanced low-carbon transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
- Valkering, Pieter & Moglianesi, Andrea & Godon, Louis & Duerinck, Jan & Huber, Dominik & Costa, Daniele, 2023. "Representing decentralized generation and local energy use flexibility in an energy system optimization model," Applied Energy, Elsevier, vol. 348(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yin, Linfei & Qiu, Yao, 2022. "Long-term price guidance mechanism of flexible energy service providers based on stochastic differential methods," Energy, Elsevier, vol. 238(PB).
- Felten, Björn & Weber, Christoph, 2018. "The value(s) of flexible heat pumps – Assessment of technical and economic conditions," Applied Energy, Elsevier, vol. 228(C), pages 1292-1319.
- Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
- Marszal-Pomianowska, Anna & Widén, Joakim & Le Dréau, Jérôme & Heiselberg, Per & Bak-Jensen, Birgitte & de Cerio Mendaza, Iker Diaz, 2020. "Operation of power distribution networks with new and flexible loads: A case of existing residential low voltage network," Energy, Elsevier, vol. 202(C).
- John Clauß & Sebastian Stinner & Christian Solli & Karen Byskov Lindberg & Henrik Madsen & Laurent Georges, 2019. "Evaluation Method for the Hourly Average CO 2eq. Intensity of the Electricity Mix and Its Application to the Demand Response of Residential Heating," Energies, MDPI, vol. 12(7), pages 1-25, April.
- Li, Han & Johra, Hicham & de Andrade Pereira, Flavia & Hong, Tianzhen & Le Dréau, Jérôme & Maturo, Anthony & Wei, Mingjun & Liu, Yapan & Saberi-Derakhtenjani, Ali & Nagy, Zoltan & Marszal-Pomianowska,, 2023. "Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives," Applied Energy, Elsevier, vol. 343(C).
- Beccali, Marco & Bonomolo, Marina & Martorana, Francesca & Catrini, Pietro & Buscemi, Alessandro, 2022. "Electrical hybrid heat pumps assisted by natural gas boilers: a review," Applied Energy, Elsevier, vol. 322(C).
- Clauß, John & Stinner, Sebastian & Sartori, Igor & Georges, Laurent, 2019. "Predictive rule-based control to activate the energy flexibility of Norwegian residential buildings: Case of an air-source heat pump and direct electric heating," Applied Energy, Elsevier, vol. 237(C), pages 500-518.
- Brudermueller, Tobias & Kreft, Markus & Fleisch, Elgar & Staake, Thorsten, 2023. "Large-scale monitoring of residential heat pump cycling using smart meter data," Applied Energy, Elsevier, vol. 350(C).
- Yunusov, Timur & Torriti, Jacopo, 2021. "Distributional effects of Time of Use tariffs based on electricity demand and time use," Energy Policy, Elsevier, vol. 156(C).
- Chen, Xiaodong & Ge, Xinxin & Sun, Rongfu & Wang, Fei & Mi, Zengqiang, 2024. "A SVM based demand response capacity prediction model considering internal factors under composite program," Energy, Elsevier, vol. 300(C).
- Nikolas Schöne & Kathrin Greilmeier & Boris Heinz, 2022. "Survey-Based Assessment of the Preferences in Residential Demand Response on the Island of Mayotte," Energies, MDPI, vol. 15(4), pages 1-30, February.
- Dranka, Géremi Gilson & Ferreira, Paula, 2019. "Review and assessment of the different categories of demand response potentials," Energy, Elsevier, vol. 179(C), pages 280-294.
- Langer, Lissy & Volling, Thomas, 2020. "An optimal home energy management system for modulating heat pumps and photovoltaic systems," Applied Energy, Elsevier, vol. 278(C).
- Dengiz, Thomas & Jochem, Patrick, 2020. "Decentralized optimization approaches for using the load flexibility of electric heating devices," Energy, Elsevier, vol. 193(C).
- Zahra Fallahi & Gregor P. Henze, 2019. "Interactive Buildings: A Review," Sustainability, MDPI, vol. 11(14), pages 1-26, July.
- Guntram Pressmair & Christof Amann & Klemens Leutgöb, 2021. "Business Models for Demand Response: Exploring the Economic Limits for Small- and Medium-Sized Prosumers," Energies, MDPI, vol. 14(21), pages 1-28, October.
- Singh Gaur, Ankita & Fitiwi, Desta & Curtis, John, 2019. "Heat pumps and their role in decarbonising heating Sector: a comprehensive review," Papers WP627, Economic and Social Research Institute (ESRI).
- Good, Nicholas & Ellis, Keith A. & Mancarella, Pierluigi, 2017. "Review and classification of barriers and enablers of demand response in the smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 57-72.
- Darby, Sarah J., 2020. "Demand response and smart technology in theory and practice: Customer experiences and system actors," Energy Policy, Elsevier, vol. 143(C).
More about this item
Keywords
Energy flexibility; Demand response; Measurement and verification; Baseline methodologies; Social perspective; Smart grids;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:165:y:2022:i:c:s1364032122005007. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.