IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v176y2019icp365-379.html
   My bibliography  Save this article

Economic model predictive control for demand flexibility of a residential building

Author

Listed:
  • Finck, Christian
  • Li, Rongling
  • Zeiler, Wim

Abstract

Future building energy management systems will have to be capable of adapting to variation in the rate of production of energy from renewable sources. Controllers employing a model predictive control (MPC) framework can optimise and schedule energy usage based on the availability of renewably generated energy. In this paper, an MPC using artificial neural networks (ANNs) was implemented in a residential building. The ANN-MPC was successfully tested and demonstrated good performance predicting the building's energy consumption. The controller was then modified to function as an economic MPC (EMPC) to optimise demand flexibility (i.e., the ability to adapt energy demands to fluctuations in supply). The operational costs of energy usage were associated with this demand flexibility, which was represented by three flexibility indicators: flexibility factor, supply cover factor, and load cover factor. The results from a day-long test showed that these flexibility indicators were maximised (flexibility factor ranged from −0.88 to 0.67, supply cover factor from 0.04 to 0.13, and load cover factor from 0.07 to 0.16) when the EMPC controller's demand flexibility was compared to that of a conventional proportional-integral (PI) controller. The EMPC framework for demand flexibility can be used to regulate on-site energy generation, grid consumption, and grid feed-in and can thus serve as a basis for overall optimisation of the operation of heating systems to achieve greater demand flexibility.

Suggested Citation

  • Finck, Christian & Li, Rongling & Zeiler, Wim, 2019. "Economic model predictive control for demand flexibility of a residential building," Energy, Elsevier, vol. 176(C), pages 365-379.
  • Handle: RePEc:eee:energy:v:176:y:2019:i:c:p:365-379
    DOI: 10.1016/j.energy.2019.03.171
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219305912
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.03.171?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Junker, Rune Grønborg & Azar, Armin Ghasem & Lopes, Rui Amaral & Lindberg, Karen Byskov & Reynders, Glenn & Relan, Rishi & Madsen, Henrik, 2018. "Characterizing the energy flexibility of buildings and districts," Applied Energy, Elsevier, vol. 225(C), pages 175-182.
    2. De Coninck, Roel & Helsen, Lieve, 2016. "Quantification of flexibility in buildings by cost curves – Methodology and application," Applied Energy, Elsevier, vol. 162(C), pages 653-665.
    3. Afroz, Zakia & Urmee, Tania & Shafiullah, G.M. & Higgins, Gary, 2018. "Real-time prediction model for indoor temperature in a commercial building," Applied Energy, Elsevier, vol. 231(C), pages 29-53.
    4. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
    5. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    6. Reynders, Glenn & Diriken, Jan & Saelens, Dirk, 2017. "Generic characterization method for energy flexibility: Applied to structural thermal storage in residential buildings," Applied Energy, Elsevier, vol. 198(C), pages 192-202.
    7. Salom, Jaume & Marszal, Anna Joanna & Widén, Joakim & Candanedo, José & Lindberg, Karen Byskov, 2014. "Analysis of load match and grid interaction indicators in net zero energy buildings with simulated and monitored data," Applied Energy, Elsevier, vol. 136(C), pages 119-131.
    8. Li, Rongling & Dane, Gamze & Finck, Christian & Zeiler, Wim, 2017. "Are building users prepared for energy flexible buildings?—A large-scale survey in the Netherlands," Applied Energy, Elsevier, vol. 203(C), pages 623-634.
    9. Amrouche, Badia & Le Pivert, Xavier, 2014. "Artificial neural network based daily local forecasting for global solar radiation," Applied Energy, Elsevier, vol. 130(C), pages 333-341.
    10. Le Dréau, J. & Heiselberg, P., 2016. "Energy flexibility of residential buildings using short term heat storage in the thermal mass," Energy, Elsevier, vol. 111(C), pages 991-1002.
    11. Clauß, John & Stinner, Sebastian & Sartori, Igor & Georges, Laurent, 2019. "Predictive rule-based control to activate the energy flexibility of Norwegian residential buildings: Case of an air-source heat pump and direct electric heating," Applied Energy, Elsevier, vol. 237(C), pages 500-518.
    12. Vanhoudt, D. & Geysen, D. & Claessens, B. & Leemans, F. & Jespers, L. & Van Bael, J., 2014. "An actively controlled residential heat pump: Potential on peak shaving and maximization of self-consumption of renewable energy," Renewable Energy, Elsevier, vol. 63(C), pages 531-543.
    13. Wang, Andong & Li, Rongling & You, Shi, 2018. "Development of a data driven approach to explore the energy flexibility potential of building clusters," Applied Energy, Elsevier, vol. 232(C), pages 89-100.
    14. Fiorentini, Massimo & Wall, Josh & Ma, Zhenjun & Braslavsky, Julio H. & Cooper, Paul, 2017. "Hybrid model predictive control of a residential HVAC system with on-site thermal energy generation and storage," Applied Energy, Elsevier, vol. 187(C), pages 465-479.
    15. Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
    16. Salpakari, Jyri & Lund, Peter, 2016. "Optimal and rule-based control strategies for energy flexibility in buildings with PV," Applied Energy, Elsevier, vol. 161(C), pages 425-436.
    17. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    18. Stinner, Sebastian & Huchtemann, Kristian & Müller, Dirk, 2016. "Quantifying the operational flexibility of building energy systems with thermal energy storages," Applied Energy, Elsevier, vol. 181(C), pages 140-154.
    19. Fischer, David & Madani, Hatef, 2017. "On heat pumps in smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 342-357.
    20. Vaz, A.G.R. & Elsinga, B. & van Sark, W.G.J.H.M. & Brito, M.C., 2016. "An artificial neural network to assess the impact of neighbouring photovoltaic systems in power forecasting in Utrecht, the Netherlands," Renewable Energy, Elsevier, vol. 85(C), pages 631-641.
    21. Reynolds, Jonathan & Rezgui, Yacine & Kwan, Alan & Piriou, Solène, 2018. "A zone-level, building energy optimisation combining an artificial neural network, a genetic algorithm, and model predictive control," Energy, Elsevier, vol. 151(C), pages 729-739.
    22. Wang, Zeyu & Srinivasan, Ravi S., 2017. "A review of artificial intelligence based building energy use prediction: Contrasting the capabilities of single and ensemble prediction models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 796-808.
    23. Žáčeková, Eva & Váňa, Zdeněk & Cigler, Jiří, 2014. "Towards the real-life implementation of MPC for an office building: Identification issues," Applied Energy, Elsevier, vol. 135(C), pages 53-62.
    24. Dengiz, Thomas & Jochem, Patrick & Fichtner, Wolf, 2019. "Demand response with heuristic control strategies for modulating heat pumps," Applied Energy, Elsevier, vol. 238(C), pages 1346-1360.
    25. Fuentes, E. & Waddicor, D.A. & Salom, J., 2016. "Improvements in the characterization of the efficiency degradation of water-to-water heat pumps under cyclic conditions," Applied Energy, Elsevier, vol. 179(C), pages 778-789.
    26. Diagne, Maimouna & David, Mathieu & Lauret, Philippe & Boland, John & Schmutz, Nicolas, 2013. "Review of solar irradiance forecasting methods and a proposition for small-scale insular grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 65-76.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harder, Nick & Qussous, Ramiz & Weidlich, Anke, 2020. "The cost of providing operational flexibility from distributed energy resources," Applied Energy, Elsevier, vol. 279(C).
    2. Lee, Zachary E. & Zhang, K. Max, 2021. "Generalized reinforcement learning for building control using Behavioral Cloning," Applied Energy, Elsevier, vol. 304(C).
    3. Knudsen, Michael Dahl & Georges, Laurent & Skeie, Kristian Stenerud & Petersen, Steffen, 2021. "Experimental test of a black-box economic model predictive control for residential space heating," Applied Energy, Elsevier, vol. 298(C).
    4. Thilker, Christian Ankerstjerne & Madsen, Henrik & Jørgensen, John Bagterp, 2021. "Advanced forecasting and disturbance modelling for model predictive control of smart energy systems," Applied Energy, Elsevier, vol. 292(C).
    5. Yunbo Yang & Rongling Li & Tao Huang, 2020. "Smart Meter Data Analysis of a Building Cluster for Heating Load Profile Quantification and Peak Load Shifting," Energies, MDPI, vol. 13(17), pages 1-20, August.
    6. Dong, Zhe & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2020. "Multilayer perception based reinforcement learning supervisory control of energy systems with application to a nuclear steam supply system," Applied Energy, Elsevier, vol. 259(C).
    7. Backe, Stian & Kara, Güray & Tomasgard, Asgeir, 2020. "Comparing individual and coordinated demand response with dynamic and static power grid tariffs," Energy, Elsevier, vol. 201(C).
    8. Morovat, Navid & Athienitis, Andreas K. & Candanedo, José Agustín & Nouanegue, Hervé Frank, 2024. "Heuristic model predictive control implementation to activate energy flexibility in a fully electric school building," Energy, Elsevier, vol. 296(C).
    9. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    10. Wang, Qiaochu & Ding, Yan & Kong, Xiangfei & Tian, Zhe & Xu, Linrui & He, Qing, 2022. "Load pattern recognition based optimization method for energy flexibility in office buildings," Energy, Elsevier, vol. 254(PC).
    11. Wan, Xin & Luo, Xiong-Lin, 2020. "Economic optimization of chemical processes based on zone predictive control with redundancy variables," Energy, Elsevier, vol. 212(C).
    12. Tarragona, Joan & Fernández, Cèsar & de Gracia, Alvaro, 2020. "Model predictive control applied to a heating system with PV panels and thermal energy storage," Energy, Elsevier, vol. 197(C).
    13. Petrucci, Andrea & Ayevide, Follivi Kloutse & Buonomano, Annamaria & Athienitis, Andreas, 2023. "Development of energy aggregators for virtual communities: The energy efficiency-flexibility nexus for demand response," Renewable Energy, Elsevier, vol. 215(C).
    14. Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
    15. Huang, Tao & Yang, Xiaochen & Svendsen, Svend, 2020. "Multi-mode control method for the existing domestic hot water storage tanks with district heating supply," Energy, Elsevier, vol. 191(C).
    16. Li, Han & Johra, Hicham & de Andrade Pereira, Flavia & Hong, Tianzhen & Le Dréau, Jérôme & Maturo, Anthony & Wei, Mingjun & Liu, Yapan & Saberi-Derakhtenjani, Ali & Nagy, Zoltan & Marszal-Pomianowska,, 2023. "Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives," Applied Energy, Elsevier, vol. 343(C).
    17. Seferlis, Panos & Varbanov, Petar Sabev & Papadopoulos, Athanasios I. & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2021. "Sustainable design, integration, and operation for energy high-performance process systems," Energy, Elsevier, vol. 224(C).
    18. Wang, Fei & Lu, Xiaoxing & Chang, Xiqiang & Cao, Xin & Yan, Siqing & Li, Kangping & Duić, Neven & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "Household profile identification for behavioral demand response: A semi-supervised learning approach using smart meter data," Energy, Elsevier, vol. 238(PB).
    19. Bampoulas, Adamantios & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2022. "An ensemble learning-based framework for assessing the energy flexibility of residential buildings with multicomponent energy systems," Applied Energy, Elsevier, vol. 315(C).
    20. Finck, Christian & Li, Rongling & Zeiler, Wim, 2020. "Optimal control of demand flexibility under real-time pricing for heating systems in buildings: A real-life demonstration," Applied Energy, Elsevier, vol. 263(C).
    21. Bampoulas, Adamantios & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2023. "A Bayesian deep-learning framework for assessing the energy flexibility of residential buildings with multicomponent energy systems," Applied Energy, Elsevier, vol. 348(C).
    22. Joe, Jaewan & Im, Piljae & Cui, Borui & Dong, Jin, 2023. "Model-based predictive control of multi-zone commercial building with a lumped building modelling approach," Energy, Elsevier, vol. 263(PA).
    23. Deng, Zhipeng & Wang, Xuezheng & Jiang, Zixin & Zhou, Nianxin & Ge, Haiwang & Dong, Bing, 2023. "Evaluation of deploying data-driven predictive controls in buildings on a large scale for greenhouse gas emission reduction," Energy, Elsevier, vol. 270(C).
    24. Bünning, Felix & Huber, Benjamin & Schalbetter, Adrian & Aboudonia, Ahmed & Hudoba de Badyn, Mathias & Heer, Philipp & Smith, Roy S. & Lygeros, John, 2022. "Physics-informed linear regression is competitive with two Machine Learning methods in residential building MPC," Applied Energy, Elsevier, vol. 310(C).
    25. Deng, Zhipeng & Wang, Xuezheng & Dong, Bing, 2023. "Quantum computing for future real-time building HVAC controls," Applied Energy, Elsevier, vol. 334(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Finck, Christian & Li, Rongling & Zeiler, Wim, 2020. "Optimal control of demand flexibility under real-time pricing for heating systems in buildings: A real-life demonstration," Applied Energy, Elsevier, vol. 263(C).
    2. Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
    3. Li, Han & Johra, Hicham & de Andrade Pereira, Flavia & Hong, Tianzhen & Le Dréau, Jérôme & Maturo, Anthony & Wei, Mingjun & Liu, Yapan & Saberi-Derakhtenjani, Ali & Nagy, Zoltan & Marszal-Pomianowska,, 2023. "Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives," Applied Energy, Elsevier, vol. 343(C).
    4. Liu, Mingzhe & Heiselberg, Per, 2019. "Energy flexibility of a nearly zero-energy building with weather predictive control on a convective building energy system and evaluated with different metrics," Applied Energy, Elsevier, vol. 233, pages 764-775.
    5. Clauß, John & Stinner, Sebastian & Sartori, Igor & Georges, Laurent, 2019. "Predictive rule-based control to activate the energy flexibility of Norwegian residential buildings: Case of an air-source heat pump and direct electric heating," Applied Energy, Elsevier, vol. 237(C), pages 500-518.
    6. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    7. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    8. Ehsan Khorsandnejad & Robert Malzahn & Ann-Katrin Oldenburg & Annedore Mittreiter & Christian Doetsch, 2023. "Analysis of Flexibility Potential of a Cold Warehouse with Different Refrigeration Compressors," Energies, MDPI, vol. 17(1), pages 1-22, December.
    9. Bampoulas, Adamantios & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2022. "An ensemble learning-based framework for assessing the energy flexibility of residential buildings with multicomponent energy systems," Applied Energy, Elsevier, vol. 315(C).
    10. Bampoulas, Adamantios & Saffari, Mohammad & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2021. "A fundamental unified framework to quantify and characterise energy flexibility of residential buildings with multiple electrical and thermal energy systems," Applied Energy, Elsevier, vol. 282(PA).
    11. Massimiliano Manfren & Maurizio Sibilla & Lamberto Tronchin, 2021. "Energy Modelling and Analytics in the Built Environment—A Review of Their Role for Energy Transitions in the Construction Sector," Energies, MDPI, vol. 14(3), pages 1-29, January.
    12. Perera, A.T.D. & Nik, Vahid M. & Wickramasinghe, P.U. & Scartezzini, Jean-Louis, 2019. "Redefining energy system flexibility for distributed energy system design," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Alessia Arteconi & Fabio Polonara, 2018. "Assessing the Demand Side Management Potential and the Energy Flexibility of Heat Pumps in Buildings," Energies, MDPI, vol. 11(7), pages 1-19, July.
    14. Amadeh, Ali & Lee, Zachary E. & Zhang, K. Max, 2022. "Quantifying demand flexibility of building energy systems under uncertainty," Energy, Elsevier, vol. 246(C).
    15. Oliveira Panão, Marta J.N. & Mateus, Nuno M. & Carrilho da Graça, G., 2019. "Measured and modeled performance of internal mass as a thermal energy battery for energy flexible residential buildings," Applied Energy, Elsevier, vol. 239(C), pages 252-267.
    16. Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
    17. Arteconi, Alessia & Mugnini, Alice & Polonara, Fabio, 2019. "Energy flexible buildings: A methodology for rating the flexibility performance of buildings with electric heating and cooling systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    18. Dmytro Romanchenko & Emil Nyholm & Mikael Odenberger & Filip Johnsson, 2019. "Flexibility Potential of Space Heating Demand Response in Buildings for District Heating Systems," Energies, MDPI, vol. 12(15), pages 1-23, July.
    19. Maitanova, Nailya & Schlüters, Sunke & Hanke, Benedikt & von Maydell, Karsten, 2024. "An analytical method for quantifying the flexibility potential of decentralised energy systems," Applied Energy, Elsevier, vol. 364(C).
    20. Awan, Muhammad Bilal & Sun, Yongjun & Lin, Wenye & Ma, Zhenjun, 2023. "A framework to formulate and aggregate performance indicators to quantify building energy flexibility," Applied Energy, Elsevier, vol. 349(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:176:y:2019:i:c:p:365-379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.