IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i13p3421-d379532.html
   My bibliography  Save this article

Techno-Economic Assessment of Energy Storage Technologies for Inertia Response and Frequency Support from Wind Farms

Author

Listed:
  • Hector Beltran

    (Department Industrial Systems Engineering and Design, Universitat Jaume I, Av. Sos Baynat s/n, E-12071 Castelló de la Plana, Spain)

  • Sam Harrison

    (Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XQ, UK)

  • Agustí Egea-Àlvarez

    (Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XQ, UK)

  • Lie Xu

    (Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XQ, UK)

Abstract

This paper provides the result of a techno-economic study of potential energy storage technologies deployable at wind farms to provide short-term ancillary services such as inertia response and frequency support. Two different scenarios are considered including a single energy storage system for the whole wind farm and individual energy storage for each wind turbine (located at either the dc or the ac side of its grid-side converter). Simulations are introduced to check the technical viability of the proposal with different control strategies. Power and energy capability requirements demanded by both specific services are defined for each studied case based on present and future grid code needs. Based on these requirements, the study compares a wide range of energy storage technologies in terms of present-day technical readiness and properties and identifies potential candidate solutions. These are flywheels, supercapacitors, and three chemistries out of the Li-ion battery family. Finally, the results of a techno-economic assessment (mainly based on weight, volume, lifetime, and industry-confirmed costings) detail the advantages and disadvantages of the proposed solutions for the different scenarios under consideration. The main conclusion is that none of the candidates are found to be clearly superior to the others over the whole range of scenarios. Commercially available solutions have to be tailored to the different requirements depending on the amount of inertia, maximum Rate of Change of Frequency and maximum frequency deviation to be allowed.

Suggested Citation

  • Hector Beltran & Sam Harrison & Agustí Egea-Àlvarez & Lie Xu, 2020. "Techno-Economic Assessment of Energy Storage Technologies for Inertia Response and Frequency Support from Wind Farms," Energies, MDPI, vol. 13(13), pages 1-21, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3421-:d:379532
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/13/3421/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/13/3421/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Teng, Fei & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Zeng, Pingliang & Strbac, Goran, 2017. "Challenges on primary frequency control and potential solution from EVs in the future GB electricity system," Applied Energy, Elsevier, vol. 194(C), pages 353-362.
    2. Ujjwal Datta & Akhtar Kalam & Juan Shi, 2020. "Battery Energy Storage System for Aggregated Inertia-Droop Control and a Novel Frequency Dependent State-of-Charge Recovery," Energies, MDPI, vol. 13(8), pages 1-18, April.
    3. Yanfeng Ma & Zijian Lin & Rennan Yu & Shuqiang Zhao, 2018. "Research on Improved VSG Control Algorithm Based on Capacity-Limited Energy Storage System," Energies, MDPI, vol. 11(3), pages 1-17, March.
    4. O. Schmidt & A. Hawkes & A. Gambhir & I. Staffell, 2017. "The future cost of electrical energy storage based on experience rates," Nature Energy, Nature, vol. 2(8), pages 1-8, August.
    5. Andrés Peña Asensio & Francisco Gonzalez-Longatt & Santiago Arnaltes & Jose Luis Rodríguez-Amenedo, 2020. "Analysis of the Converter Synchronizing Method for the Contribution of Battery Energy Storage Systems to Inertia Emulation," Energies, MDPI, vol. 13(6), pages 1-18, March.
    6. Dreidy, Mohammad & Mokhlis, H. & Mekhilef, Saad, 2017. "Inertia response and frequency control techniques for renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 144-155.
    7. Akram, Umer & Nadarajah, Mithulananthan & Shah, Rakibuzzaman & Milano, Federico, 2020. "A review on rapid responsive energy storage technologies for frequency regulation in modern power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    8. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    9. Chong, Lee Wai & Wong, Yee Wan & Rajkumar, Rajprasad Kumar & Rajkumar, Rajpartiban Kumar & Isa, Dino, 2016. "Hybrid energy storage systems and control strategies for stand-alone renewable energy power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 174-189.
    10. Atherton, J. & Sharma, R. & Salgado, J., 2017. "Techno-economic analysis of energy storage systems for application in wind farms," Energy, Elsevier, vol. 135(C), pages 540-552.
    11. Thongchart Kerdphol & Fathin Saifur Rahman & Yasunori Mitani, 2018. "Virtual Inertia Control Application to Enhance Frequency Stability of Interconnected Power Systems with High Renewable Energy Penetration," Energies, MDPI, vol. 11(4), pages 1-16, April.
    12. Hadjipaschalis, Ioannis & Poullikkas, Andreas & Efthimiou, Venizelos, 2009. "Overview of current and future energy storage technologies for electric power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1513-1522, August.
    13. Berecibar, M. & Gandiaga, I. & Villarreal, I. & Omar, N. & Van Mierlo, J. & Van den Bossche, P., 2016. "Critical review of state of health estimation methods of Li-ion batteries for real applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 572-587.
    14. Callum Henderson & Dimitrios Vozikis & Derrick Holliday & Xiaoyan Bian & Agustí Egea-Àlvarez, 2020. "Assessment of Grid-Connected Wind Turbines with an Inertia Response by Considering Internal Dynamics," Energies, MDPI, vol. 13(5), pages 1-28, February.
    15. Junhui Li & Yunbao Ma & Gang Mu & Xichao Feng & Gangui Yan & Gan Guo & Tianyang Zhang, 2018. "Optimal Configuration of Energy Storage System Coordinating Wind Turbine to Participate Power System Primary Frequency Regulation," Energies, MDPI, vol. 11(6), pages 1-16, May.
    16. Abdon, Andreas & Zhang, Xiaojin & Parra, David & Patel, Martin K. & Bauer, Christian & Worlitschek, Jörg, 2017. "Techno-economic and environmental assessment of stationary electricity storage technologies for different time scales," Energy, Elsevier, vol. 139(C), pages 1173-1187.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paulo Rotella Junior & Luiz Célio Souza Rocha & Sandra Naomi Morioka & Ivan Bolis & Gianfranco Chicco & Andrea Mazza & Karel Janda, 2021. "Economic Analysis of the Investments in Battery Energy Storage Systems: Review and Current Perspectives," Energies, MDPI, vol. 14(9), pages 1-29, April.
    2. Mariano G. Ippolito & Fabio Massaro & Rossano Musca & Gaetano Zizzo, 2021. "An Original Control Strategy of Storage Systems for the Frequency Stability of Autonomous Grids with Renewable Power Generation," Energies, MDPI, vol. 14(15), pages 1-22, July.
    3. Tarek A. Boghdady & Yasmin E. Kotb & Abdullah Aljumah & Mahmoud M. Sayed, 2022. "Comparative Study of Optimal PV Array Configurations and MPPT under Partial Shading with Fast Dynamical Change of Hybrid Load," Sustainability, MDPI, vol. 14(5), pages 1-17, March.
    4. Haoming Liu & Suxiang Yang & Xiaoling Yuan, 2021. "Inertia Control Strategy of DFIG-Based Wind Turbines Considering Low-Frequency Oscillation Suppression," Energies, MDPI, vol. 15(1), pages 1-15, December.
    5. Albert, Max & Ma, Zhiwei & Bao, Huashan & Roskilly, Anthony Paul, 2022. "Operation and performance of Brayton Pumped Thermal Energy Storage with additional latent storage," Applied Energy, Elsevier, vol. 312(C).
    6. D’Ettorre, F. & Banaei, M. & Ebrahimy, R. & Pourmousavi, S. Ali & Blomgren, E.M.V. & Kowalski, J. & Bohdanowicz, Z. & Łopaciuk-Gonczaryk, B. & Biele, C. & Madsen, H., 2022. "Exploiting demand-side flexibility: State-of-the-art, open issues and social perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    7. Naseri, F. & Karimi, S. & Farjah, E. & Schaltz, E., 2022. "Supercapacitor management system: A comprehensive review of modeling, estimation, balancing, and protection techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    3. Hirase, Yuko & Abe, Kensho & Sugimoto, Kazushige & Sakimoto, Kenichi & Bevrani, Hassan & Ise, Toshifumi, 2018. "A novel control approach for virtual synchronous generators to suppress frequency and voltage fluctuations in microgrids," Applied Energy, Elsevier, vol. 210(C), pages 699-710.
    4. Zhang, Ziyu & Ding, Tao & Zhou, Quan & Sun, Yuge & Qu, Ming & Zeng, Ziyu & Ju, Yuntao & Li, Li & Wang, Kang & Chi, Fangde, 2021. "A review of technologies and applications on versatile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Luta, Doudou N. & Raji, Atanda K., 2019. "Optimal sizing of hybrid fuel cell-supercapacitor storage system for off-grid renewable applications," Energy, Elsevier, vol. 166(C), pages 530-540.
    6. Ana Fernández-Guillamón & Antonio Vigueras-Rodríguez & Emilio Gómez-Lázaro & Ángel Molina-García, 2018. "Fast Power Reserve Emulation Strategy for VSWT Supporting Frequency Control in Multi-Area Power Systems," Energies, MDPI, vol. 11(10), pages 1-20, October.
    7. Gulam Smdani & Muhammad Remanul Islam & Ahmad Naim Ahmad Yahaya & Sairul Izwan Bin Safie, 2023. "Performance Evaluation Of Advanced Energy Storage Systems: A Review," Energy & Environment, , vol. 34(4), pages 1094-1141, June.
    8. Daniel Akinyele & Juri Belikov & Yoash Levron, 2017. "Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems," Energies, MDPI, vol. 10(11), pages 1-39, November.
    9. Shi, Jiaqi & Ma, Liya & Li, Chenchen & Liu, Nian & Zhang, Jianhua, 2022. "A comprehensive review of standards for distributed energy resource grid-integration and microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    10. Parra, David & Valverde, Luis & Pino, F. Javier & Patel, Martin K., 2019. "A review on the role, cost and value of hydrogen energy systems for deep decarbonisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 279-294.
    11. Sara Bellocchi & Michele Manno & Michel Noussan & Michela Vellini, 2019. "Impact of Grid-Scale Electricity Storage and Electric Vehicles on Renewable Energy Penetration: A Case Study for Italy," Energies, MDPI, vol. 12(7), pages 1-32, April.
    12. Natascia Andrenacci & Elio Chiodo & Davide Lauria & Fabio Mottola, 2018. "Life Cycle Estimation of Battery Energy Storage Systems for Primary Frequency Regulation," Energies, MDPI, vol. 11(12), pages 1-24, November.
    13. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    14. Zhou, Yu & Xia, Caichu & Zhao, Haibin & Mei, Songhua & Zhou, Shuwei, 2018. "An iterative method for evaluating air leakage from unlined compressed air energy storage (CAES) caverns," Renewable Energy, Elsevier, vol. 120(C), pages 434-445.
    15. Pablo Fernández-Bustamante & Oscar Barambones & Isidro Calvo & Cristian Napole & Mohamed Derbeli, 2021. "Provision of Frequency Response from Wind Farms: A Review," Energies, MDPI, vol. 14(20), pages 1-24, October.
    16. Saheli Biswas & Shambhu Singh Rathore & Aniruddha Pramod Kulkarni & Sarbjit Giddey & Sankar Bhattacharya, 2021. "A Theoretical Study on Reversible Solid Oxide Cells as Key Enablers of Cyclic Conversion between Electrical Energy and Fuel," Energies, MDPI, vol. 14(15), pages 1-18, July.
    17. Zihao Cheng & Songlin Hu & Jieting Ma, 2020. "Resilient Event-Triggered Control for LFC-VSG Scheme of Uncertain Discrete-Time Power System under DoS Attacks," Energies, MDPI, vol. 13(7), pages 1-21, April.
    18. Hemmati, Reza & Saboori, Hedayat & Saboori, Saeid, 2016. "Stochastic risk-averse coordinated scheduling of grid integrated energy storage units in transmission constrained wind-thermal systems within a conditional value-at-risk framework," Energy, Elsevier, vol. 113(C), pages 762-775.
    19. Johlas, Hannah & Witherby, Shelby & Doyle, James R., 2020. "Storage requirements for high grid penetration of wind and solar power for the MISO region of North America: A case study," Renewable Energy, Elsevier, vol. 146(C), pages 1315-1324.
    20. Bri‐Mathias S. Hodge & Himanshu Jain & Carlo Brancucci & Gab‐Su Seo & Magnus Korpås & Juha Kiviluoma & Hannele Holttinen & James Charles Smith & Antje Orths & Ana Estanqueiro & Lennart Söder & Damian , 2020. "Addressing technical challenges in 100% variable inverter‐based renewable energy power systems," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(5), September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3421-:d:379532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.