IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v196y2025ics0301421524004166.html
   My bibliography  Save this article

The value of decentral flexibility in nodal market design – A case study for Europe 2030

Author

Listed:
  • Boehnke, Florian
  • Kramer, Hendrik
  • Weber, Christoph

Abstract

To better integrate fluctuant renewable energy sources, we investigate the local value of decentral flexibility options e.g., battery storage systems, electric vehicles and heat pumps, under nodal market design. A novel framework to depict the economic value of decentral flexibility units at different locations is presented: First, based on an energy system model, nodal as well as zonal price time series are generated. Second, flexibility values are computed based on these price time series using operation models. Our case study for 2030 for Europe demonstrates the high value of decentral flexibility provided especially by bidirectional flexibility options. The mean daily price spread is found to be a main driver for all flexibility values. We observe similar flexibility values across most nodes in both market designs. However, for a distinct subset of nodes that represent close to 10% of total demand, substantially higher values of local flexibilities are observed which indicates a markedly higher demand for flexibility. Yet, the zonal market design only provides imperfect incentives for the system-oriented operation of flexibilities at these nodes. Besides the introduction of nodal pricing as first-best option, we propose to consider tailored instruments focusing on these flexibility hot spots as second-best policies.

Suggested Citation

  • Boehnke, Florian & Kramer, Hendrik & Weber, Christoph, 2025. "The value of decentral flexibility in nodal market design – A case study for Europe 2030," Energy Policy, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:enepol:v:196:y:2025:i:c:s0301421524004166
    DOI: 10.1016/j.enpol.2024.114396
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421524004166
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2024.114396?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    2. Wolf-Peter Schill, Alexander Zerrahn, and Friedrich Kunz, 2017. "Prosumage of solar electricity: pros, cons, and the system perspective," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    3. Ambrosius, Mirjam & Grimm, Veronika & Sölch, Christian & Zöttl, Gregor, 2018. "Investment incentives for flexible demand options under different market designs," Energy Policy, Elsevier, vol. 118(C), pages 372-389.
    4. Trepper, Katrin & Bucksteeg, Michael & Weber, Christoph, 2015. "Market splitting in Germany – New evidence from a three-stage numerical model of Europe," Energy Policy, Elsevier, vol. 87(C), pages 199-215.
    5. Felten, Björn & Osinski, Paul & Felling, Tim & Weber, Christoph, 2021. "The flow-based market coupling domain - Why we can't get it right," Utilities Policy, Elsevier, vol. 70(C).
    6. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    7. Mauricio B. C. Salles & Junling Huang & Michael J. Aziz & William W. Hogan, 2017. "Potential Arbitrage Revenue of Energy Storage Systems in PJM," Energies, MDPI, vol. 10(8), pages 1-19, July.
    8. Lété, Quentin & Smeers, Yves & Papavasiliou, Anthony, 2022. "An analysis of zonal electricity pricing from a long-term perspective," Energy Economics, Elsevier, vol. 107(C).
    9. Eid, Cherrelle & Codani, Paul & Perez, Yannick & Reneses, Javier & Hakvoort, Rudi, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 237-247.
    10. Eicke, Anselm & Schittekatte, Tim, 2022. "Fighting the wrong battle? A critical assessment of arguments against nodal electricity prices in the European debate," Energy Policy, Elsevier, vol. 170(C).
    11. Orlando Valarezo & Tomás Gómez & José Pablo Chaves-Avila & Leandro Lind & Mauricio Correa & David Ulrich Ziegler & Rodrigo Escobar, 2021. "Analysis of New Flexibility Market Models in Europe," Energies, MDPI, vol. 14(12), pages 1-24, June.
    12. Sebastian Schreck & Robin Sudhoff & Sebastian Thiem & Stefan Niessen, 2022. "On the Importance of Grid Tariff Designs in Local Energy Markets," Energies, MDPI, vol. 15(17), pages 1-25, August.
    13. D’Ettorre, F. & Banaei, M. & Ebrahimy, R. & Pourmousavi, S. Ali & Blomgren, E.M.V. & Kowalski, J. & Bohdanowicz, Z. & Łopaciuk-Gonczaryk, B. & Biele, C. & Madsen, H., 2022. "Exploiting demand-side flexibility: State-of-the-art, open issues and social perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    14. Aniello, Gianmarco & Bertsch, Valentin, 2023. "Shaping the energy transition in the residential sector: Regulatory incentives for aligning household and system perspectives," Applied Energy, Elsevier, vol. 333(C).
    15. Ambrosius, Mirjam & Grimm, Veronika & Kleinert, Thomas & Liers, Frauke & Schmidt, Martin & Zöttl, Gregor, 2020. "Endogenous price zones and investment incentives in electricity markets: An application of multilevel optimization with graph partitioning," Energy Economics, Elsevier, vol. 92(C).
    16. Misconel, S. & Leisen, R. & Mikurda, J. & Zimmermann, F. & Fraunholz, C. & Fichtner, W. & Möst, D. & Weber, C., 2022. "Systematic comparison of high-resolution electricity system modeling approaches focusing on investment, dispatch and generation adequacy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    17. Kudela, Libor & Špiláček, Michal & Pospíšil, Jiří, 2021. "Influence of control strategy on seasonal coefficient of performance for a heat pump with low-temperature heat storage in the geographical conditions of Central Europe," Energy, Elsevier, vol. 234(C).
    18. Lété, Quentin & Smeers, Yves & Papavasiliou, Anthony, 2022. "An analysis of zonal electricity pricing from a long-term perspective," LIDAM Reprints CORE 3201, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    19. Jin, Xiaolong & Wu, Qiuwei & Jia, Hongjie, 2020. "Local flexibility markets: Literature review on concepts, models and clearing methods," Applied Energy, Elsevier, vol. 261(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kara, Güray & Tomasgard, Asgeir & Farahmand, Hossein, 2022. "Characterizing flexibility in power markets and systems," Utilities Policy, Elsevier, vol. 75(C).
    2. Karim L. Anaya & Michael G. Pollitt, 2021. "How to Procure Flexibility Services within the Electricity Distribution System: Lessons from an International Review of Innovation Projects," Energies, MDPI, vol. 14(15), pages 1-26, July.
    3. Ajla Mehinovic & Matej Zajc & Nermin Suljanovic, 2023. "Interpretation and Quantification of the Flexibility Sources Location on the Flexibility Service in the Distribution Grid," Energies, MDPI, vol. 16(2), pages 1-18, January.
    4. Grimm, Veronika & Rückel, Bastian & Sölch, Christian & Zöttl, Gregor, 2021. "The impact of market design on transmission and generation investment in electricity markets," Energy Economics, Elsevier, vol. 93(C).
    5. Förster, Robert & Harding, Sebastian & Buhl, Hans Ulrich, 2024. "Unleashing the economic and ecological potential of energy flexibility: Attractiveness of real-time electricity tariffs in energy crises," Energy Policy, Elsevier, vol. 185(C).
    6. Triolo, Ryan C. & Wolak, Frank A., 2022. "Quantifying the benefits of a nodal market design in the Texas electricity market," Energy Economics, Elsevier, vol. 112(C).
    7. Guray Kara & Asgeir Tomasgard & Hossein Farahmand, 2021. "Characterization of flexible electricity in power and energy markets," Papers 2109.03000, arXiv.org.
    8. Grimm, Veronika & Grübel, Julia & Rückel, Bastian & Sölch, Christian & Zöttl, Gregor, 2020. "Storage investment and network expansion in distribution networks: The impact of regulatory frameworks," Applied Energy, Elsevier, vol. 262(C).
    9. Aikaterini Forouli & Emmanouil A. Bakirtzis & Georgios Papazoglou & Konstantinos Oureilidis & Vasileios Gkountis & Luisa Candido & Eloi Delgado Ferrer & Pandelis Biskas, 2021. "Assessment of Demand Side Flexibility in European Electricity Markets: A Country Level Review," Energies, MDPI, vol. 14(8), pages 1-23, April.
    10. Daniela Pereira Macedo & António Cardoso Marques & Olivier Damette, 2023. "Challenges in Assessing the Behaviour of Nodal Electricity Prices in Insular Electricity Markets: The Case of New Zealand," Economies, MDPI, vol. 11(6), pages 1-19, June.
    11. Ali Darudi & Hannes Weigt, 2024. "Review and Assessment of Decarbonized Future Electricity Markets," Energies, MDPI, vol. 17(18), pages 1-38, September.
    12. Felten, Björn & Weber, Christoph, 2018. "The value(s) of flexible heat pumps – Assessment of technical and economic conditions," Applied Energy, Elsevier, vol. 228(C), pages 1292-1319.
    13. Mete Şeref Ahunbay & Martin Bichler & Johannes Knörr, 2024. "Challenges in Designing Electricity Spot Markets," NBER Chapters, in: New Directions in Market Design, National Bureau of Economic Research, Inc.
    14. Matthew Gough & Sérgio F. Santos & Mohammed Javadi & Rui Castro & João P. S. Catalão, 2020. "Prosumer Flexibility: A Comprehensive State-of-the-Art Review and Scientometric Analysis," Energies, MDPI, vol. 13(11), pages 1-32, May.
    15. Lechl, Michael & Fürmann, Tim & de Meer, Hermann & Weidlich, Anke, 2023. "A review of models for energy system flexibility requirements and potentials using the new FLEXBLOX taxonomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    16. Schipfer, F. & Mäki, E. & Schmieder, U. & Lange, N. & Schildhauer, T. & Hennig, C. & Thrän, D., 2022. "Status of and expectations for flexible bioenergy to support resource efficiency and to accelerate the energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    17. Brucke, Karoline & Schlüters, Sunke & Hanke, Benedikt & Agert, Carsten & von Maydell, Karsten, 2025. "System friendliness of distributed resources in sustainable energy systems," Applied Energy, Elsevier, vol. 377(PC).
    18. Backe, Stian & Zwickl-Bernhard, Sebastian & Schwabeneder, Daniel & Auer, Hans & Korpås, Magnus & Tomasgard, Asgeir, 2022. "Impact of energy communities on the European electricity and heating system decarbonization pathway: Comparing local and global flexibility responses," Applied Energy, Elsevier, vol. 323(C).
    19. Ruhnau, O. & Bucksteeg, M. & Ritter, D. & Schmitz, R. & Böttger, D. & Koch, M. & Pöstges, A. & Wiedmann, M. & Hirth, L., 2022. "Why electricity market models yield different results: Carbon pricing in a model-comparison experiment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    20. Bucksteeg, Michael & Wiedmann, Michael & Pöstges, Arne & Haller, Markus & Böttger, Diana & Ruhnau, Oliver & Schmitz, Richard, 2022. "The transformation of integrated electricity and heat systems—Assessing mid-term policies using a model comparison approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:196:y:2025:i:c:s0301421524004166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.