IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v204y2017icp93-105.html
   My bibliography  Save this article

Comparison of control approaches for variable speed air source heat pumps considering time variable electricity prices and PV

Author

Listed:
  • Fischer, David
  • Bernhardt, Josef
  • Madani, Hatef
  • Wittwer, Christof

Abstract

The influence of different control strategies and boundary conditions on heat pump system performance are investigated in this study and the trade-off between complexity and performance of different controllers is addressed. For this purpose five different control approaches for a variable speed air source heat pump in a multi family house are compared for three different use-cases. The used controls differ in complexity and the use of external input data like price and weather forecasts. The use-cases are: Constant electricity prices, time variable electricity prices and PV self-consumption. Four different rule-based controllers are compared to a convex MPC approach, presented in this work.

Suggested Citation

  • Fischer, David & Bernhardt, Josef & Madani, Hatef & Wittwer, Christof, 2017. "Comparison of control approaches for variable speed air source heat pumps considering time variable electricity prices and PV," Applied Energy, Elsevier, vol. 204(C), pages 93-105.
  • Handle: RePEc:eee:appene:v:204:y:2017:i:c:p:93-105
    DOI: 10.1016/j.apenergy.2017.06.110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917308607
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.06.110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Salpakari, Jyri & Lund, Peter, 2016. "Optimal and rule-based control strategies for energy flexibility in buildings with PV," Applied Energy, Elsevier, vol. 161(C), pages 425-436.
    2. Fischer, David & Madani, Hatef, 2017. "On heat pumps in smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 342-357.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
    2. Joshua M. Pearce & Nelson Sommerfeldt, 2021. "Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada," Energies, MDPI, vol. 14(4), pages 1-17, February.
    3. Psimopoulos, Emmanouil & Bee, Elena & Widén, Joakim & Bales, Chris, 2019. "Techno-economic analysis of control algorithms for an exhaust air heat pump system for detached houses coupled to a photovoltaic system," Applied Energy, Elsevier, vol. 249(C), pages 355-367.
    4. Maria Pinamonti & Alessandro Prada & Paolo Baggio, 2020. "Rule-Based Control Strategy to Increase Photovoltaic Self-Consumption of a Modulating Heat Pump Using Water Storages and Building Mass Activation," Energies, MDPI, vol. 13(23), pages 1-21, November.
    5. Pospíšil, Jiří & Špiláček, Michal & Kudela, Libor, 2018. "Potential of predictive control for improvement of seasonal coefficient of performance of air source heat pump in Central European climate zone," Energy, Elsevier, vol. 154(C), pages 415-423.
    6. Finck, Christian & Li, Rongling & Zeiler, Wim, 2019. "Economic model predictive control for demand flexibility of a residential building," Energy, Elsevier, vol. 176(C), pages 365-379.
    7. Edmunds, Calum & Galloway, Stuart & Dixon, James & Bukhsh, Waqquas & Elders, Ian, 2021. "Hosting capacity assessment of heat pumps and optimised electric vehicle charging on low voltage networks," Applied Energy, Elsevier, vol. 298(C).
    8. Clauß, John & Stinner, Sebastian & Sartori, Igor & Georges, Laurent, 2019. "Predictive rule-based control to activate the energy flexibility of Norwegian residential buildings: Case of an air-source heat pump and direct electric heating," Applied Energy, Elsevier, vol. 237(C), pages 500-518.
    9. Omais Abdur Rehman & Valeria Palomba & Andrea Frazzica & Luisa F. Cabeza, 2021. "Enabling Technologies for Sector Coupling: A Review on the Role of Heat Pumps and Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-30, December.
    10. Efkarpidis, Nikolaos A. & Vomva, Styliani A. & Christoforidis, Georgios C. & Papagiannis, Grigoris K., 2022. "Optimal day-to-day scheduling of multiple energy assets in residential buildings equipped with variable-speed heat pumps," Applied Energy, Elsevier, vol. 312(C).
    11. Rick Cox & Shalika Walker & Joep van der Velden & Phuong Nguyen & Wim Zeiler, 2020. "Flattening the Electricity Demand Profile of Office Buildings for Future-Proof Smart Grids," Energies, MDPI, vol. 13(9), pages 1-27, May.
    12. Wakui, Tetsuya & Sawada, Kento & Yokoyama, Ryohei & Aki, Hirohisa, 2019. "Predictive management for energy supply networks using photovoltaics, heat pumps, and battery by two-stage stochastic programming and rule-based control," Energy, Elsevier, vol. 179(C), pages 1302-1319.
    13. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Lin, Zhongwei & Fang, Fang & Chen, Qun, 2021. "Optimal operation of integrated electricity and heat system: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Wilke, Christoph & Bensmann, Astrid & Martin, Stefan & Utz, Annika & Hanke-Rauschenbach, Richard, 2018. "Optimal design of a district energy system including supply for fuel cell electric vehicles," Applied Energy, Elsevier, vol. 226(C), pages 129-144.
    15. Langer, Lissy & Volling, Thomas, 2020. "An optimal home energy management system for modulating heat pumps and photovoltaic systems," Applied Energy, Elsevier, vol. 278(C).
    16. Sebastian Kuboth & Theresa Weith & Florian Heberle & Matthias Welzl & Dieter Brüggemann, 2020. "Experimental Long-Term Investigation of Model Predictive Heat Pump Control in Residential Buildings with Photovoltaic Power Generation," Energies, MDPI, vol. 13(22), pages 1-17, November.
    17. Han, Gwangwoo & Joo, Hong-Jin & Lim, Hee-Won & An, Young-Sub & Lee, Wang-Je & Lee, Kyoung-Ho, 2023. "Data-driven heat pump operation strategy using rainbow deep reinforcement learning for significant reduction of electricity cost," Energy, Elsevier, vol. 270(C).
    18. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    19. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
    20. Vorushylo, Inna & Keatley, Patrick & Shah, Nikhilkumar & Green, Richard & Hewitt, Neil, 2018. "How heat pumps and thermal energy storage can be used to manage wind power: A study of Ireland," Energy, Elsevier, vol. 157(C), pages 539-549.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:204:y:2017:i:c:p:93-105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.