IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v242y2019icp1407-1421.html
   My bibliography  Save this article

Experimental flexibility identification of aggregated residential thermal loads using behind-the-meter data

Author

Listed:
  • Ziras, Charalampos
  • Heinrich, Carsten
  • Pertl, Michael
  • Bindner, Henrik W.

Abstract

Thermal loads are an important source of flexibility at a residential customer level. The uncertain economic value of residential demand response (DR), and the rising customer data privacy concerns, require non-intrusive and economical approaches to harness flexibility. Baselines are essential for evaluating DR activations, however, the frequent use of flexibility makes them less accurate. In this paper, we first propose a baseline estimation method based solely on aggregated behind the meter data, which does not require additional knowledge of the portfolio’s parameters. It is suited for frequent DR activations, and relies on a combination of linear interpolation, forward-backward autoregression and load decomposition. The method is then used to evaluate DR activations, in order to construct, and continuously update, a model for the response and the rebound behavior of the loads. A portfolio of 138 real residential customers equipped with electric heaters, and a large number of DR experiments, were used to verify the proposed approach. The response model, fitted with the experimental results, shows a strong dependency of the load reduction potential on time of day and ambient temperature, with a maximum load reduction equal to 1.2 kW per household. Validation results confirm that the fitted model can be used to estimate the response with a good accuracy. Finally, a model to describe and shape the rebound behavior of the loads is proposed and validated with real experiments.

Suggested Citation

  • Ziras, Charalampos & Heinrich, Carsten & Pertl, Michael & Bindner, Henrik W., 2019. "Experimental flexibility identification of aggregated residential thermal loads using behind-the-meter data," Applied Energy, Elsevier, vol. 242(C), pages 1407-1421.
  • Handle: RePEc:eee:appene:v:242:y:2019:i:c:p:1407-1421
    DOI: 10.1016/j.apenergy.2019.03.156
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919305641
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.03.156?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christiane Rosen and Reinhard Madlener, 2016. "Regulatory Options for Local Reserve Energy Markets: Implications for Prosumers, Utilities, and other Stakeholders," The Energy Journal, International Association for Energy Economics, vol. 0(Bollino-M).
    2. Bianchini, Gianni & Casini, Marco & Vicino, Antonio & Zarrilli, Donato, 2016. "Demand-response in building heating systems: A Model Predictive Control approach," Applied Energy, Elsevier, vol. 168(C), pages 159-170.
    3. Junker, Rune Grønborg & Azar, Armin Ghasem & Lopes, Rui Amaral & Lindberg, Karen Byskov & Reynders, Glenn & Relan, Rishi & Madsen, Henrik, 2018. "Characterizing the energy flexibility of buildings and districts," Applied Energy, Elsevier, vol. 225(C), pages 175-182.
    4. Spiliotis, Konstantinos & Ramos Gutierrez, Ariana Isabel & Belmans, Ronnie, 2016. "Demand flexibility versus physical network expansions in distribution grids," Applied Energy, Elsevier, vol. 182(C), pages 613-624.
    5. Chen, Yongbao & Xu, Peng & Chu, Yiyi & Li, Weilin & Wu, Yuntao & Ni, Lizhou & Bao, Yi & Wang, Kun, 2017. "Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings," Applied Energy, Elsevier, vol. 195(C), pages 659-670.
    6. Liang, Xin & Hong, Tianzhen & Shen, Geoffrey Qiping, 2016. "Improving the accuracy of energy baseline models for commercial buildings with occupancy data," Applied Energy, Elsevier, vol. 179(C), pages 247-260.
    7. Jiang, Bo & Farid, Amro M. & Youcef-Toumi, Kamal, 2015. "Demand side management in a day-ahead wholesale market: A comparison of industrial & social welfare approaches," Applied Energy, Elsevier, vol. 156(C), pages 642-654.
    8. Le Dréau, J. & Heiselberg, P., 2016. "Energy flexibility of residential buildings using short term heat storage in the thermal mass," Energy, Elsevier, vol. 111(C), pages 991-1002.
    9. Olivella-Rosell, Pol & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Sumper, Andreas & Ottesen, Stig Ødegaard & Vidal-Clos, Josep-Andreu & Villafáfila-Robles, Roberto, 2018. "Optimization problem for meeting distribution system operator requests in local flexibility markets with distributed energy resources," Applied Energy, Elsevier, vol. 210(C), pages 881-895.
    10. Good, Nicholas, 2019. "Using behavioural economic theory in modelling of demand response," Applied Energy, Elsevier, vol. 239(C), pages 107-116.
    11. Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
    12. Johra, Hicham & Heiselberg, Per, 2017. "Influence of internal thermal mass on the indoor thermal dynamics and integration of phase change materials in furniture for building energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 19-32.
    13. Vu, D.H. & Muttaqi, K.M. & Agalgaonkar, A.P. & Bouzerdoum, A., 2017. "Short-term electricity demand forecasting using autoregressive based time varying model incorporating representative data adjustment," Applied Energy, Elsevier, vol. 205(C), pages 790-801.
    14. Wang, Qi & Zhang, Chunyu & Ding, Yi & Xydis, George & Wang, Jianhui & Østergaard, Jacob, 2015. "Review of real-time electricity markets for integrating Distributed Energy Resources and Demand Response," Applied Energy, Elsevier, vol. 138(C), pages 695-706.
    15. Nolan, Sheila & O’Malley, Mark, 2015. "Challenges and barriers to demand response deployment and evaluation," Applied Energy, Elsevier, vol. 152(C), pages 1-10.
    16. Müller, F.L. & Jansen, B., 2019. "Large-scale demonstration of precise demand response provided by residential heat pumps," Applied Energy, Elsevier, vol. 239(C), pages 836-845.
    17. Nesreen Ahmed & Amir Atiya & Neamat El Gayar & Hisham El-Shishiny, 2010. "An Empirical Comparison of Machine Learning Models for Time Series Forecasting," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 594-621.
    18. Walter, Travis & Price, Phillip N. & Sohn, Michael D., 2014. "Uncertainty estimation improves energy measurement and verification procedures," Applied Energy, Elsevier, vol. 130(C), pages 230-236.
    19. Granderson, Jessica & Price, Phillip N., 2014. "Development and application of a statistical methodology to evaluate the predictive accuracy of building energy baseline models," Energy, Elsevier, vol. 66(C), pages 981-990.
    20. Zhang, G. Peter & Qi, Min, 2005. "Neural network forecasting for seasonal and trend time series," European Journal of Operational Research, Elsevier, vol. 160(2), pages 501-514, January.
    21. Stinner, Sebastian & Huchtemann, Kristian & Müller, Dirk, 2016. "Quantifying the operational flexibility of building energy systems with thermal energy storages," Applied Energy, Elsevier, vol. 181(C), pages 140-154.
    22. Oliveira Panão, Marta J.N. & Mateus, Nuno M. & Carrilho da Graça, G., 2019. "Measured and modeled performance of internal mass as a thermal energy battery for energy flexible residential buildings," Applied Energy, Elsevier, vol. 239(C), pages 252-267.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Müller, Nils & Heinrich, Carsten & Heussen, Kai & Bindner, Henrik W., 2022. "Unsupervised detection and open-set classification of fast-ramped flexibility activation events," Applied Energy, Elsevier, vol. 312(C).
    2. Adriana Mar & Pedro Pereira & João Martins, 2021. "Energy Community Flexibility Solutions to Improve Users’ Wellbeing," Energies, MDPI, vol. 14(12), pages 1-22, June.
    3. Tatiana Gabderakhmanova & Mattia Marinelli, 2022. "Multi-Energy System Demonstration Pilots on Geographical Islands: An Overview across Europe," Energies, MDPI, vol. 15(11), pages 1-26, May.
    4. Sevdari, Kristian & Calearo, Lisa & Andersen, Peter Bach & Marinelli, Mattia, 2022. "Ancillary services and electric vehicles: An overview from charging clusters and chargers technology perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Wei, Congying & Wu, Qiuwei & Xu, Jian & Sun, Yuanzhang & Jin, Xiaolong & Liao, Siyang & Yuan, Zhiyong & Yu, Li, 2020. "Distributed scheduling of smart buildings to smooth power fluctuations considering load rebound," Applied Energy, Elsevier, vol. 276(C).
    6. Barja-Martinez, Sara & Aragüés-Peñalba, Mònica & Munné-Collado, Íngrid & Lloret-Gallego, Pau & Bullich-Massagué, Eduard & Villafafila-Robles, Roberto, 2021. "Artificial intelligence techniques for enabling Big Data services in distribution networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Nizami, Sohrab & Tushar, Wayes & Hossain, M.J. & Yuen, Chau & Saha, Tapan & Poor, H. Vincent, 2022. "Transactive energy for low voltage residential networks: A review," Applied Energy, Elsevier, vol. 323(C).
    8. Olsen, Karen Pardos & Zong, Yi & You, Shi & Bindner, Henrik & Koivisto, Matti & Gea-Bermúdez, Juan, 2020. "Multi-timescale data-driven method identifying flexibility requirements for scenarios with high penetration of renewables," Applied Energy, Elsevier, vol. 264(C).
    9. Ziras, Charalampos & Heinrich, Carsten & Bindner, Henrik W., 2021. "Why baselines are not suited for local flexibility markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Heinrich, Carsten & Ziras, Charalampos & Jensen, Tue V. & Bindner, Henrik W. & Kazempour, Jalal, 2021. "A local flexibility market mechanism with capacity limitation services," Energy Policy, Elsevier, vol. 156(C).
    11. Heinrich, Carsten & Ziras, Charalampos & Syrri, Angeliki L.A. & Bindner, Henrik W., 2020. "EcoGrid 2.0: A large-scale field trial of a local flexibility market," Applied Energy, Elsevier, vol. 261(C).
    12. Li, Han & Johra, Hicham & de Andrade Pereira, Flavia & Hong, Tianzhen & Le Dréau, Jérôme & Maturo, Anthony & Wei, Mingjun & Liu, Yapan & Saberi-Derakhtenjani, Ali & Nagy, Zoltan & Marszal-Pomianowska,, 2023. "Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives," Applied Energy, Elsevier, vol. 343(C).
    13. O'Connell, Sarah & Reynders, Glenn & Keane, Marcus M., 2021. "Impact of source variability on flexibility for demand response," Energy, Elsevier, vol. 237(C).
    14. D’Ettorre, F. & Banaei, M. & Ebrahimy, R. & Pourmousavi, S. Ali & Blomgren, E.M.V. & Kowalski, J. & Bohdanowicz, Z. & Łopaciuk-Gonczaryk, B. & Biele, C. & Madsen, H., 2022. "Exploiting demand-side flexibility: State-of-the-art, open issues and social perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Han & Johra, Hicham & de Andrade Pereira, Flavia & Hong, Tianzhen & Le Dréau, Jérôme & Maturo, Anthony & Wei, Mingjun & Liu, Yapan & Saberi-Derakhtenjani, Ali & Nagy, Zoltan & Marszal-Pomianowska,, 2023. "Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives," Applied Energy, Elsevier, vol. 343(C).
    2. Ziras, Charalampos & Heinrich, Carsten & Bindner, Henrik W., 2021. "Why baselines are not suited for local flexibility markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Heinrich, Carsten & Ziras, Charalampos & Syrri, Angeliki L.A. & Bindner, Henrik W., 2020. "EcoGrid 2.0: A large-scale field trial of a local flexibility market," Applied Energy, Elsevier, vol. 261(C).
    4. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    5. Oliveira Panão, Marta J.N. & Mateus, Nuno M. & Carrilho da Graça, G., 2019. "Measured and modeled performance of internal mass as a thermal energy battery for energy flexible residential buildings," Applied Energy, Elsevier, vol. 239(C), pages 252-267.
    6. Bampoulas, Adamantios & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2022. "An ensemble learning-based framework for assessing the energy flexibility of residential buildings with multicomponent energy systems," Applied Energy, Elsevier, vol. 315(C).
    7. Finck, Christian & Li, Rongling & Zeiler, Wim, 2019. "Economic model predictive control for demand flexibility of a residential building," Energy, Elsevier, vol. 176(C), pages 365-379.
    8. Liu, Mingzhe & Heiselberg, Per, 2019. "Energy flexibility of a nearly zero-energy building with weather predictive control on a convective building energy system and evaluated with different metrics," Applied Energy, Elsevier, vol. 233, pages 764-775.
    9. Silvia Erba & Lorenzo Pagliano, 2021. "Combining Sufficiency, Efficiency and Flexibility to Achieve Positive Energy Districts Targets," Energies, MDPI, vol. 14(15), pages 1-32, August.
    10. Pallonetto, Fabiano & De Rosa, Mattia & D’Ettorre, Francesco & Finn, Donal P., 2020. "On the assessment and control optimisation of demand response programs in residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    11. Bampoulas, Adamantios & Saffari, Mohammad & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2021. "A fundamental unified framework to quantify and characterise energy flexibility of residential buildings with multiple electrical and thermal energy systems," Applied Energy, Elsevier, vol. 282(PA).
    12. Dmytro Romanchenko & Emil Nyholm & Mikael Odenberger & Filip Johnsson, 2019. "Flexibility Potential of Space Heating Demand Response in Buildings for District Heating Systems," Energies, MDPI, vol. 12(15), pages 1-23, July.
    13. Perera, A.T.D. & Nik, Vahid M. & Wickramasinghe, P.U. & Scartezzini, Jean-Louis, 2019. "Redefining energy system flexibility for distributed energy system design," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    14. Xiaoyi Zhang & Weijun Gao & Yanxue Li & Zixuan Wang & Yoshiaki Ushifusa & Yingjun Ruan, 2021. "Operational Performance and Load Flexibility Analysis of Japanese Zero Energy House," IJERPH, MDPI, vol. 18(13), pages 1-19, June.
    15. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    16. Matthew Gough & Sérgio F. Santos & Mohammed Javadi & Rui Castro & João P. S. Catalão, 2020. "Prosumer Flexibility: A Comprehensive State-of-the-Art Review and Scientometric Analysis," Energies, MDPI, vol. 13(11), pages 1-32, May.
    17. Awan, Muhammad Bilal & Sun, Yongjun & Lin, Wenye & Ma, Zhenjun, 2023. "A framework to formulate and aggregate performance indicators to quantify building energy flexibility," Applied Energy, Elsevier, vol. 349(C).
    18. Ayman Esmat & Julio Usaola & María Ángeles Moreno, 2018. "Distribution-Level Flexibility Market for Congestion Management," Energies, MDPI, vol. 11(5), pages 1-24, April.
    19. Monika Hall & Achim Geissler, 2020. "Load Control by Demand Side Management to Support Grid Stability in Building Clusters," Energies, MDPI, vol. 13(19), pages 1-15, October.
    20. Jiang, Bo & Muzhikyan, Aramazd & Farid, Amro M. & Youcef-Toumi, Kamal, 2017. "Demand side management in power grid enterprise control: A comparison of industrial & social welfare approaches," Applied Energy, Elsevier, vol. 187(C), pages 833-846.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:242:y:2019:i:c:p:1407-1421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.