IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v149y2021ics1364032121006456.html
   My bibliography  Save this article

Test rooms to study human comfort in buildings: A review of controlled experiments and facilities

Author

Listed:
  • Pisello, A.L.
  • Pigliautile, I.
  • Andargie, M.
  • Berger, C.
  • Bluyssen, P.M.
  • Carlucci, S.
  • Chinazzo, G.
  • Deme Belafi, Z.
  • Dong, B.
  • Favero, M.
  • Ghahramani, A.
  • Havenith, G.
  • Heydarian, A.
  • Kastner, D.
  • Kong, M.
  • Licina, D.
  • Liu, Y.
  • Luna-Navarro, A.
  • Mahdavi, A.
  • Nocente, A.
  • Schweiker, M.
  • Touchie, M.
  • Vellei, M.
  • Vittori, F.
  • Wagner, A.
  • Wang, A.
  • Wei, S.

Abstract

Occupants’ comfort perception affects building energy consumptions. To improve the understanding of human comfort, which is crucial to reduce energy demand, laboratory experiments with humans in controlled environments (test rooms) are fundamental, but their potential also depends on the characteristic of each research facility. Nowadays, there is no common understanding for definitions, concepts, and procedures related to human comfort studies performed in test rooms. Identifying common features would allow standardising test procedures, reproducing the same experiments in different contexts, and sharing knowledge and test possibilities. This review identifies 187 existing test rooms worldwide: 396 papers were systematically selected, thoroughly reviewed, and analysed in terms of performed experiments and related test room details. The review highlights a rising interest in the topic during the last years, since 46% of related papers has been published between 2016 and 2020. A growing interest in non-thermal sensory domains (such as visual and air quality) and multi-domain studies about occupant's whole comfort emerged from the results. These research trends have entailed a change in the way test rooms are designed, equipped and controlled, progressively becoming more realistic inhabitable environments. Nevertheless, some lacks in comfort investigation are highlighted: some continents (like Africa and South America) and climate zones are found to be underrepresented, while involved subjects are mainly students performing office tasks. This review aspires to guide scientists and professionals toward the improved design or the audit of test room experimental facilities, especially in countries and climate zones where human comfort indoors is under-studied.

Suggested Citation

  • Pisello, A.L. & Pigliautile, I. & Andargie, M. & Berger, C. & Bluyssen, P.M. & Carlucci, S. & Chinazzo, G. & Deme Belafi, Z. & Dong, B. & Favero, M. & Ghahramani, A. & Havenith, G. & Heydarian, A. & K, 2021. "Test rooms to study human comfort in buildings: A review of controlled experiments and facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
  • Handle: RePEc:eee:rensus:v:149:y:2021:i:c:s1364032121006456
    DOI: 10.1016/j.rser.2021.111359
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121006456
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111359?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kyungsoo Lee & Haneul Choi & Joon-Ho Choi & Taeyeon Kim, 2019. "Development of a Data-Driven Predictive Model of Clothing Thermal Insulation Estimation by Using Advanced Computational Approaches," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    2. Park, June Young & Nagy, Zoltan, 2018. "Comprehensive analysis of the relationship between thermal comfort and building control research - A data-driven literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2664-2679.
    3. Chong, Daokun & Zhu, Neng & Luo, Wei & Zhang, Zhiyu, 2019. "Broadening human thermal comfort range based on short-term heat acclimation," Energy, Elsevier, vol. 176(C), pages 418-428.
    4. Michał Piasecki & Krystyna Kostyrko & Małgorzata Fedorczak-Cisak & Katarzyna Nowak, 2020. "Air Enthalpy as an IAQ Indicator in Hot and Humid Environment—Experimental Evaluation," Energies, MDPI, vol. 13(6), pages 1-21, March.
    5. Piselli, Cristina & Pisello, Anna Laura, 2019. "Occupant behavior long-term continuous monitoring integrated to prediction models: Impact on office building energy performance," Energy, Elsevier, vol. 176(C), pages 667-681.
    6. Delzendeh, Elham & Wu, Song & Lee, Angela & Zhou, Ying, 2017. "The impact of occupants’ behaviours on building energy analysis: A research review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1061-1071.
    7. Van Craenendonck, Stijn & Lauriks, Leen & Vuye, Cedric & Kampen, Jarl, 2018. "A review of human thermal comfort experiments in controlled and semi-controlled environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3365-3378.
    8. Naylor, Sophie & Gillott, Mark & Lau, Tom, 2018. "A review of occupant-centric building control strategies to reduce building energy use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 1-10.
    9. Djongyang, Noël & Tchinda, René & Njomo, Donatien, 2010. "Thermal comfort: A review paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2626-2640, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
    2. Wei, Jin & Ni, Yang & Zhang, Yue-Jun, 2020. "The mitigation strategies for bottom environment of service-oriented public building from a micro-scale perspective: A case study in China," Energy, Elsevier, vol. 205(C).
    3. Ma, Nan & Aviv, Dorit & Guo, Hongshan & Braham, William W., 2021. "Measuring the right factors: A review of variables and models for thermal comfort and indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Feng, Yanxiao & Liu, Shichao & Wang, Julian & Yang, Jing & Jao, Ying-Ling & Wang, Nan, 2022. "Data-driven personal thermal comfort prediction: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Yan, Biao & Yang, Wansheng & He, Fuquan & Zeng, Wenhao, 2023. "Occupant behavior impact in buildings and the artificial intelligence-based techniques and data-driven approach solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    6. Naja Aqilah & Hom Bahadur Rijal & Sheikh Ahmad Zaki, 2022. "A Review of Thermal Comfort in Residential Buildings: Comfort Threads and Energy Saving Potential," Energies, MDPI, vol. 15(23), pages 1-23, November.
    7. Piselli, Cristina & Salvadori, Giacomo & Diciotti, Lorenzo & Fantozzi, Fabio & Pisello, Anna Laura, 2021. "Assessing users’ willingness-to-engagement towards Net Zero Energy communities in Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    8. Laura J. Elstub & Shimra J. Fine & Karl E. Zelik, 2021. "Exoskeletons and Exosuits Could Benefit from Mode-Switching Body Interfaces That Loosen/Tighten to Improve Thermal Comfort," IJERPH, MDPI, vol. 18(24), pages 1-12, December.
    9. Bruno Malet-Damour & Jean-Pierre Habas & Dimitri Bigot, 2023. "Is Loose-Fill Plastic Waste an Opportunity for Thermal Insulation in Cold and Humid Tropical Climates?," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    10. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
    11. Tarragona, Joan & Pisello, Anna Laura & Fernández, Cèsar & Cabeza, Luisa F. & Payá, Jorge & Marchante-Avellaneda, Javier & de Gracia, Alvaro, 2022. "Analysis of thermal energy storage tanks and PV panels combinations in different buildings controlled through model predictive control," Energy, Elsevier, vol. 239(PC).
    12. Michael Short & Sergio Rodriguez & Richard Charlesworth & Tracey Crosbie & Nashwan Dawood, 2019. "Optimal Dispatch of Aggregated HVAC Units for Demand Response: An Industry 4.0 Approach," Energies, MDPI, vol. 12(22), pages 1-20, November.
    13. Shu Su & Xiaodong Li & Borong Lin & Hongyang Li & Jingfeng Yuan, 2019. "A Comparison of the Environmental Performance of Cooling and Heating among Different Household Types in China’s Hot Summer–Cold Winter Zone," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    14. Mojtaba Ashour & Amir Mahdiyar & Syarmila Hany Haron, 2021. "A Comprehensive Review of Deterrents to the Practice of Sustainable Interior Architecture and Design," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    15. Van Craenendonck, Stijn & Lauriks, Leen & Vuye, Cedric & Kampen, Jarl, 2018. "A review of human thermal comfort experiments in controlled and semi-controlled environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3365-3378.
    16. Antonio Paone & Jean-Philippe Bacher, 2018. "The Impact of Building Occupant Behavior on Energy Efficiency and Methods to Influence It: A Review of the State of the Art," Energies, MDPI, vol. 11(4), pages 1-19, April.
    17. Martin Eriksson & Jan Akander & Bahram Moshfegh, 2022. "Investigating Energy Use in a City District in Nordic Climate Using Energy Signature," Energies, MDPI, vol. 15(5), pages 1-22, March.
    18. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
    19. Escandón, Rocío & Suárez, Rafael & Sendra, Juan José, 2019. "Field assessment of thermal comfort conditions and energy performance of social housing: The case of hot summers in the Mediterranean climate," Energy Policy, Elsevier, vol. 128(C), pages 377-392.
    20. Azar, Elie & Nikolopoulou, Christina & Papadopoulos, Sokratis, 2016. "Integrating and optimizing metrics of sustainable building performance using human-focused agent-based modeling," Applied Energy, Elsevier, vol. 183(C), pages 926-937.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:149:y:2021:i:c:s1364032121006456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.