A Review of Thermal Comfort in Residential Buildings: Comfort Threads and Energy Saving Potential
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Park, June Young & Nagy, Zoltan, 2018. "Comprehensive analysis of the relationship between thermal comfort and building control research - A data-driven literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2664-2679.
- Alan Barreca & Karen Clay & Olivier Deschenes & Michael Greenstone & Joseph S. Shapiro, 2016. "Adapting to Climate Change: The Remarkable Decline in the US Temperature-Mortality Relationship over the Twentieth Century," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 105-159.
- Wu, Zhibin & Li, Nianping & Wargocki, Pawel & Peng, Jingqing & Li, Jingming & Cui, Haijiao, 2019. "Field study on thermal comfort and energy saving potential in 11 split air-conditioned office buildings in Changsha, China," Energy, Elsevier, vol. 182(C), pages 471-482.
- Djongyang, Noël & Tchinda, René & Njomo, Donatien, 2010. "Thermal comfort: A review paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2626-2640, December.
- Al-Sanea, Sami A. & Zedan, M.F., 2008. "Optimized monthly-fixed thermostat-setting scheme for maximum energy-savings and thermal comfort in air-conditioned spaces," Applied Energy, Elsevier, vol. 85(5), pages 326-346, May.
- Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
- Sadineni, Suresh B. & Boehm, Robert F., 2012. "Measurements and simulations for peak electrical load reduction in cooling dominated climate," Energy, Elsevier, vol. 37(1), pages 689-697.
- Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
- Peeters, Leen & Dear, Richard de & Hensen, Jan & D'haeseleer, William, 2009. "Thermal comfort in residential buildings: Comfort values and scales for building energy simulation," Applied Energy, Elsevier, vol. 86(5), pages 772-780, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
- Antonella Yaacoub & Moez Esseghir & Leila Merghem-Boulahia, 2023. "A Review of Different Methodologies to Study Occupant Comfort and Energy Consumption," Energies, MDPI, vol. 16(4), pages 1-18, February.
- Qing Yin & Yuqi Zhang & Ying Liu, 2023. "Investigation on Thermal Comfort and Thermal Adaptive Behaviors of Rural Residents in Suibin Town, China, in Summer," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
- Shahrin Sultana Sinthia, 2024. "Comparative Analysis of Thermal Comfort in Residential Buildings: A Study of the impact of Urban Density, Height, and Layout Patterns in the Context of Dhaka," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(5), pages 1141-1160, May.
- Tyler R. Stevens & Nathan B. Crane & Rydge B. Mulford, 2023. "Topology Morphing Insulation: A Review of Technologies and Energy Performance in Dynamic Building Insulation," Energies, MDPI, vol. 16(19), pages 1-38, October.
- Prativa Lamsal & Sushil Bahadur Bajracharya & Hom Bahadur Rijal, 2023. "A Review on Adaptive Thermal Comfort of Office Building for Energy-Saving Building Design," Energies, MDPI, vol. 16(3), pages 1-23, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Sheng & Lin, Zhang, 2020. "Standard effective temperature based adaptive-rational thermal comfort model," Applied Energy, Elsevier, vol. 264(C).
- Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
- Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
- Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
- Ren, Zhengen & Chen, Dong, 2018. "Modelling study of the impact of thermal comfort criteria on housing energy use in Australia," Applied Energy, Elsevier, vol. 210(C), pages 152-166.
- Guillén-Lambea, Silvia & Rodríguez-Soria, Beatriz & Marín, José M., 2017. "Comfort settings and energy demand for residential nZEB in warm climates," Applied Energy, Elsevier, vol. 202(C), pages 471-486.
- Zhang, Sheng & Cheng, Yong & Fang, Zhaosong & Huan, Chao & Lin, Zhang, 2017. "Optimization of room air temperature in stratum-ventilated rooms for both thermal comfort and energy saving," Applied Energy, Elsevier, vol. 204(C), pages 420-431.
- Prativa Lamsal & Sushil Bahadur Bajracharya & Hom Bahadur Rijal, 2023. "A Review on Adaptive Thermal Comfort of Office Building for Energy-Saving Building Design," Energies, MDPI, vol. 16(3), pages 1-23, February.
- Ma, Nan & Aviv, Dorit & Guo, Hongshan & Braham, William W., 2021. "Measuring the right factors: A review of variables and models for thermal comfort and indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Yan, Huaxia & Pan, Yan & Li, Zhao & Deng, Shiming, 2018. "Further development of a thermal comfort based fuzzy logic controller for a direct expansion air conditioning system," Applied Energy, Elsevier, vol. 219(C), pages 312-324.
- Wang, Zhe & Hong, Tianzhen, 2020. "Learning occupants’ indoor comfort temperature through a Bayesian inference approach for office buildings in United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Xu, Xiaoqi & Culligan, Patricia J. & Taylor, John E., 2014. "Energy Saving Alignment Strategy: Achieving energy efficiency in urban buildings by matching occupant temperature preferences with a building’s indoor thermal environment," Applied Energy, Elsevier, vol. 123(C), pages 209-219.
- Jin Wei & Fangsi Yu & Haixiu Liang & Maohui Luo, 2020. "Thermal Performance of Vertical Courtyard System in Office Buildings Under Typical Hot Days in Hot-Humid Climate Area: A Case Study," Sustainability, MDPI, vol. 12(7), pages 1-14, March.
- Pilechiha, Peiman & Mahdavinejad, Mohammadjavad & Pour Rahimian, Farzad & Carnemolla, Phillippa & Seyedzadeh, Saleh, 2020. "Multi-objective optimisation framework for designing office windows: quality of view, daylight and energy efficiency," Applied Energy, Elsevier, vol. 261(C).
- Alimohammadisagvand, Behrang & Jokisalo, Juha & Kilpeläinen, Simo & Ali, Mubbashir & Sirén, Kai, 2016. "Cost-optimal thermal energy storage system for a residential building with heat pump heating and demand response control," Applied Energy, Elsevier, vol. 174(C), pages 275-287.
- Wenjie Zhang & Hongping Yuan, 2019. "A Bibliometric Analysis of Energy Performance Contracting Research from 2008 to 2018," Sustainability, MDPI, vol. 11(13), pages 1-23, June.
- Jaesung Park & Taeyeon Kim & Chul-sung Lee, 2019. "Development of Thermal Comfort-Based Controller and Potential Reduction of the Cooling Energy Consumption of a Residential Building in Kuwait," Energies, MDPI, vol. 12(17), pages 1-22, August.
- Pisello, A.L. & Pigliautile, I. & Andargie, M. & Berger, C. & Bluyssen, P.M. & Carlucci, S. & Chinazzo, G. & Deme Belafi, Z. & Dong, B. & Favero, M. & Ghahramani, A. & Havenith, G. & Heydarian, A. & K, 2021. "Test rooms to study human comfort in buildings: A review of controlled experiments and facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
- Michał Piasecki & Małgorzata Fedorczak-Cisak & Marcin Furtak & Jacek Biskupski, 2019. "Experimental Confirmation of the Reliability of Fanger’s Thermal Comfort Model—Case Study of a Near-Zero Energy Building (NZEB) Office Building," Sustainability, MDPI, vol. 11(9), pages 1-25, April.
- Park, June Young & Nagy, Zoltan, 2018. "Comprehensive analysis of the relationship between thermal comfort and building control research - A data-driven literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2664-2679.
More about this item
Keywords
thermal comfort; residential building; comfort temperature; adaptive model; energy saving;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9012-:d:986982. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.