IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i22p4320-d286372.html
   My bibliography  Save this article

Optimal Dispatch of Aggregated HVAC Units for Demand Response: An Industry 4.0 Approach

Author

Listed:
  • Michael Short

    (School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, Cleveland TS1 3BA, UK)

  • Sergio Rodriguez

    (School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, Cleveland TS1 3BA, UK)

  • Richard Charlesworth

    (Energy Management Division, Siemens plc, Princess Road, Manchester M20 2UR, UK)

  • Tracey Crosbie

    (School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, Cleveland TS1 3BA, UK)

  • Nashwan Dawood

    (School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, Cleveland TS1 3BA, UK)

Abstract

Demand response (DR) involves economic incentives aimed at balancing energy demand during critical demand periods. In doing so DR offers the potential to assist with grid balancing, integrate renewable energy generation and improve energy network security. Buildings account for roughly 40% of global energy consumption. Therefore, the potential for DR using building stock offers a largely untapped resource. Heating, ventilation and air conditioning (HVAC) systems provide one of the largest possible sources for DR in buildings. However, coordinating the real-time aggregated response of multiple HVAC units across large numbers of buildings and stakeholders poses a challenging problem. Leveraging upon the concepts of Industry 4.0, this paper presents a large-scale decentralized discrete optimization framework to address this problem. Specifically, the paper first focuses upon the real-time dispatch problem for individual HVAC units in the presence of a tertiary DR program. The dispatch problem is formulated as a non-linear constrained predictive control problem, and an efficient dynamic programming (DP) algorithm with fixed memory and computation time overheads is developed for its efficient solution in real-time on individual HVAC units. Subsequently, in order to coordinate dispatch among multiple HVAC units in parallel by a DR aggregator, a flexible and efficient allocation/reallocation DP algorithm is developed to extract the cost-optimal solution and generate dispatch instructions for individual units. Accurate baselining at individual unit and aggregated levels for post-settlement is considered as an integrated component of the presented algorithms. A number of calibrated simulation studies and practical experimental tests are described to verify and illustrate the performance of the proposed schemes. The results illustrate that the distributed optimization algorithm enables a scalable, flexible solution helping to deliver the provision of aggregated tertiary DR for HVAC systems for both aggregators and individual customers. The paper concludes with a discussion of future work.

Suggested Citation

  • Michael Short & Sergio Rodriguez & Richard Charlesworth & Tracey Crosbie & Nashwan Dawood, 2019. "Optimal Dispatch of Aggregated HVAC Units for Demand Response: An Industry 4.0 Approach," Energies, MDPI, vol. 12(22), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4320-:d:286372
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/22/4320/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/22/4320/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tracey Crosbie & Michael Short & Muneeb Dawood & Richard Charlesworth, 2017. "Demand response in blocks of buildings: opportunities and requirements," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 4(3), pages 271-281, March.
    2. Djongyang, Noël & Tchinda, René & Njomo, Donatien, 2010. "Thermal comfort: A review paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2626-2640, December.
    3. Lei Zhou & Yang Li & Beibei Wang & Zhe Wang & Xiaoqing Hu, 2015. "Provision of Supplementary Load Frequency Control via Aggregation of Air Conditioning Loads," Energies, MDPI, vol. 8(12), pages 1-20, December.
    4. Short, Michael & Crosbie, Tracey & Dawood, Muneeb & Dawood, Nashwan, 2017. "Load forecasting and dispatch optimisation for decentralised co-generation plant with dual energy storage," Applied Energy, Elsevier, vol. 186(P3), pages 304-320.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Ouzhu & Ding, Tao & Yang, Miao & Jia, Wenhao & He, Xinran & Ma, Zhoujun, 2024. "A novel 4-level joint optimal dispatch for demand response of data centers with district autonomy realization," Applied Energy, Elsevier, vol. 358(C).
    2. Davide Deltetto & Davide Coraci & Giuseppe Pinto & Marco Savino Piscitelli & Alfonso Capozzoli, 2021. "Exploring the Potentialities of Deep Reinforcement Learning for Incentive-Based Demand Response in a Cluster of Small Commercial Buildings," Energies, MDPI, vol. 14(10), pages 1-25, May.
    3. Barja-Martinez, Sara & Aragüés-Peñalba, Mònica & Munné-Collado, Íngrid & Lloret-Gallego, Pau & Bullich-Massagué, Eduard & Villafafila-Robles, Roberto, 2021. "Artificial intelligence techniques for enabling Big Data services in distribution networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Wieslaw Urban & Krzysztof Łukaszewicz & Elżbieta Krawczyk-Dembicka, 2020. "Application of Industry 4.0 to the Product Development Process in Project-Type Production," Energies, MDPI, vol. 13(21), pages 1-20, October.
    5. Davor Zoričić & Goran Knežević & Marija Miletić & Denis Dolinar & Danijela Miloš Sprčić, 2022. "Integrated Risk Analysis of Aggregators: Policy Implications for the Development of the Competitive Aggregator Industry," Energies, MDPI, vol. 15(14), pages 1-22, July.
    6. Sean Williams & Michael Short & Tracey Crosbie & Maryam Shadman-Pajouh, 2020. "A Decentralized Informatics, Optimization, and Control Framework for Evolving Demand Response Services," Energies, MDPI, vol. 13(16), pages 1-30, August.
    7. Xiaoyi Zhang & Weijun Gao & Yanxue Li & Zixuan Wang & Yoshiaki Ushifusa & Yingjun Ruan, 2021. "Operational Performance and Load Flexibility Analysis of Japanese Zero Energy House," IJERPH, MDPI, vol. 18(13), pages 1-19, June.
    8. Rafał Trzaska & Adam Sulich & Michał Organa & Jerzy Niemczyk & Bartosz Jasiński, 2021. "Digitalization Business Strategies in Energy Sector: Solving Problems with Uncertainty under Industry 4.0 Conditions," Energies, MDPI, vol. 14(23), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calise, Francesco & Dentice d'Accadia, Massimo & Libertini, Luigi & Quiriti, Edoardo & Vicidomini, Maria, 2017. "A novel tool for thermoeconomic analysis and optimization of trigeneration systems: A case study for a hospital building in Italy," Energy, Elsevier, vol. 126(C), pages 64-87.
    2. Laura J. Elstub & Shimra J. Fine & Karl E. Zelik, 2021. "Exoskeletons and Exosuits Could Benefit from Mode-Switching Body Interfaces That Loosen/Tighten to Improve Thermal Comfort," IJERPH, MDPI, vol. 18(24), pages 1-12, December.
    3. Ribeiro, Thatiana Jessica da Silva & Mady, Carlos Eduardo Keutenedjian, 2022. "Comparison among exergy analysis methods applied to a human body thermal model," Energy, Elsevier, vol. 239(PE).
    4. Bruno Malet-Damour & Jean-Pierre Habas & Dimitri Bigot, 2023. "Is Loose-Fill Plastic Waste an Opportunity for Thermal Insulation in Cold and Humid Tropical Climates?," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    5. Djamila, Harimi, 2017. "Indoor thermal comfort predictions: Selected issues and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 569-580.
    6. Francesco Asdrubali & Cinzia Buratti & Franco Cotana & Giorgio Baldinelli & Michele Goretti & Elisa Moretti & Catia Baldassarri & Elisa Belloni & Francesco Bianchi & Antonella Rotili & Marco Vergoni &, 2013. "Evaluation of Green Buildings’ Overall Performance through in Situ Monitoring and Simulations," Energies, MDPI, vol. 6(12), pages 1-23, December.
    7. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
    8. Feng, Yanxiao & Liu, Shichao & Wang, Julian & Yang, Jing & Jao, Ying-Ling & Wang, Nan, 2022. "Data-driven personal thermal comfort prediction: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    9. Van Craenendonck, Stijn & Lauriks, Leen & Vuye, Cedric & Kampen, Jarl, 2018. "A review of human thermal comfort experiments in controlled and semi-controlled environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3365-3378.
    10. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
    11. Escandón, Rocío & Suárez, Rafael & Sendra, Juan José, 2019. "Field assessment of thermal comfort conditions and energy performance of social housing: The case of hot summers in the Mediterranean climate," Energy Policy, Elsevier, vol. 128(C), pages 377-392.
    12. Azar, Elie & Nikolopoulou, Christina & Papadopoulos, Sokratis, 2016. "Integrating and optimizing metrics of sustainable building performance using human-focused agent-based modeling," Applied Energy, Elsevier, vol. 183(C), pages 926-937.
    13. Haider Latif & Samira Rahnama & Alessandro Maccarini & Goran Hultmark & Peter V. Nielsen & Alireza Afshari, 2022. "Precision Ventilation in an Open-Plan Office: A New Application of Active Chilled Beam (ACB) with a JetCone Feature," Sustainability, MDPI, vol. 14(7), pages 1-17, April.
    14. Omar al-Ani & Sanjoy Das & Hongyu Wu, 2023. "Imitation Learning with Deep Attentive Tabular Neural Networks for Environmental Prediction and Control in Smart Home," Energies, MDPI, vol. 16(13), pages 1-19, June.
    15. Pilechiha, Peiman & Mahdavinejad, Mohammadjavad & Pour Rahimian, Farzad & Carnemolla, Phillippa & Seyedzadeh, Saleh, 2020. "Multi-objective optimisation framework for designing office windows: quality of view, daylight and energy efficiency," Applied Energy, Elsevier, vol. 261(C).
    16. Yuan, Jihui & Huang, Pei & Chai, Jiale, 2022. "Development of a calibrated typical meteorological year weather file in system design of zero-energy building for performance improvements," Energy, Elsevier, vol. 259(C).
    17. Verbeke, Stijn & Audenaert, Amaryllis, 2018. "Thermal inertia in buildings: A review of impacts across climate and building use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2300-2318.
    18. Hsiao-Chi Nieh & Shu-Fen Su, 2018. "Forced-Air Warming for Rewarming and Comfort Following Laparoscopy: A Randomized Controlled Trail," Clinical Nursing Research, , vol. 27(5), pages 540-559, June.
    19. Tracey Crosbie & Michael Short & Muneeb Dawood & Richard Charlesworth, 2017. "Demand response in blocks of buildings: opportunities and requirements," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 4(3), pages 271-281, March.
    20. Benalcazar, Pablo, 2021. "Optimal sizing of thermal energy storage systems for CHP plants considering specific investment costs: A case study," Energy, Elsevier, vol. 234(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4320-:d:286372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.