IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v176y2019icp418-428.html
   My bibliography  Save this article

Broadening human thermal comfort range based on short-term heat acclimation

Author

Listed:
  • Chong, Daokun
  • Zhu, Neng
  • Luo, Wei
  • Zhang, Zhiyu

Abstract

Elevating indoor temperature set-points can reduce cooling energy use. Short-term heat acclimation (HA), the artificially induced adaptation developed in three consecutive days, is an effective method to increase the occupants' acceptance to hot environments. However, the quantitative study on the effects of short-term HA on thermal comfort is lacking. To this end, simulated experiments were conducted in a climate chamber to test the difference of subjects' thermal comfort before and after short-term HA. The subjects were instructed to do intermittent treadmill exercise under hot conditions to reach a HA state. During the trials, core temperature, ratings of perceived exertion (RPE), and ratings of thermal sensation (RTS) were measured. Perceptual strain index (PeSI) was used to assess the effect of short-term HA. The results showed that short-term HA could improve subjects’ adaptability to warmer environments without sacrificing thermal comfort. Furthermore, a HA zone was defined based on the predicted percentage of dissatisfied (PPD) of 10%. The upper limit of the HA zone was 2.1 °C higher than that of the summer thermal comfort zone in ASHRAE Standard 55–2017. This finding suggests that a higher temperature set-point could be considered into the control of air-conditioning systems, contributing to building energy conservation.

Suggested Citation

  • Chong, Daokun & Zhu, Neng & Luo, Wei & Zhang, Zhiyu, 2019. "Broadening human thermal comfort range based on short-term heat acclimation," Energy, Elsevier, vol. 176(C), pages 418-428.
  • Handle: RePEc:eee:energy:v:176:y:2019:i:c:p:418-428
    DOI: 10.1016/j.energy.2019.04.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219306267
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.04.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wan, Kevin K.W. & Li, Danny H.W. & Lam, Joseph C., 2011. "Assessment of climate change impact on building energy use and mitigation measures in subtropical climates," Energy, Elsevier, vol. 36(3), pages 1404-1414.
    2. Chung, William, 2011. "Review of building energy-use performance benchmarking methodologies," Applied Energy, Elsevier, vol. 88(5), pages 1470-1479, May.
    3. Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
    4. Lam, Joseph C. & Wan, Kevin K.W. & Cheung, K.L., 2009. "An analysis of climatic influences on chiller plant electricity consumption," Applied Energy, Elsevier, vol. 86(6), pages 933-940, June.
    5. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    6. Duan, Shuangping & Luo, Zhiwen & Yang, Xinyan & Li, Yuguo, 2019. "The impact of building operations on urban heat/cool islands under urban densification: A comparison between naturally-ventilated and air-conditioned buildings," Applied Energy, Elsevier, vol. 235(C), pages 129-138.
    7. Lam, Tony N.T. & Wan, Kevin K.W. & Wong, S.L. & Lam, Joseph C., 2010. "Impact of climate change on commercial sector air conditioning energy consumption in subtropical Hong Kong," Applied Energy, Elsevier, vol. 87(7), pages 2321-2327, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Guozhong & Wei, Changqing & Li, Kang, 2022. "Determining the summer indoor design parameters for pensioners’ buildings based on the thermal requirements of elderly people at different ages," Energy, Elsevier, vol. 258(C).
    2. Ido Nevat, 2022. "Climate-informed urban design via probabilistic acceptability criterion and Sharpe ratio selection," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 617-645, January.
    3. Pisello, A.L. & Pigliautile, I. & Andargie, M. & Berger, C. & Bluyssen, P.M. & Carlucci, S. & Chinazzo, G. & Deme Belafi, Z. & Dong, B. & Favero, M. & Ghahramani, A. & Havenith, G. & Heydarian, A. & K, 2021. "Test rooms to study human comfort in buildings: A review of controlled experiments and facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Li, Qing & Zhang, Lianying & Zhang, Limao & Wu, Xianguo, 2021. "Optimizing energy efficiency and thermal comfort in building green retrofit," Energy, Elsevier, vol. 237(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Xinqiao & Yan, Da & Sun, Kaiyu & Hong, Tianzhen & Zhu, Dandan, 2016. "Comparative study of the cooling energy performance of variable refrigerant flow systems and variable air volume systems in office buildings," Applied Energy, Elsevier, vol. 183(C), pages 725-736.
    2. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    3. Wan, Kevin K.W. & Li, Danny H.W. & Pan, Wenyan & Lam, Joseph C., 2012. "Impact of climate change on building energy use in different climate zones and mitigation and adaptation implications," Applied Energy, Elsevier, vol. 97(C), pages 274-282.
    4. Abou-Ziyan, Hosny Z. & Alajmi, Ali F., 2014. "Effect of load-sharing operation strategy on the aggregate performance of existed multiple-chiller systems," Applied Energy, Elsevier, vol. 135(C), pages 329-338.
    5. Zhou, Yuren & Lork, Clement & Li, Wen-Tai & Yuen, Chau & Keow, Yeong Ming, 2019. "Benchmarking air-conditioning energy performance of residential rooms based on regression and clustering techniques," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Zhang, Ning & Yin, Shao-You & Li, Min, 2018. "Model-based optimization for a heat pump driven and hollow fiber membrane hybrid two-stage liquid desiccant air dehumidification system," Applied Energy, Elsevier, vol. 228(C), pages 12-20.
    7. Li, Xian-Xiang, 2018. "Linking residential electricity consumption and outdoor climate in a tropical city," Energy, Elsevier, vol. 157(C), pages 734-743.
    8. Jim, C.Y., 2014. "Air-conditioning energy consumption due to green roofs with different building thermal insulation," Applied Energy, Elsevier, vol. 128(C), pages 49-59.
    9. Zhu, Dan & Tao, Shu & Wang, Rong & Shen, Huizhong & Huang, Ye & Shen, Guofeng & Wang, Bin & Li, Wei & Zhang, Yanyan & Chen, Han & Chen, Yuanchen & Liu, Junfeng & Li, Bengang & Wang, Xilong & Liu, Wenx, 2013. "Temporal and spatial trends of residential energy consumption and air pollutant emissions in China," Applied Energy, Elsevier, vol. 106(C), pages 17-24.
    10. Huang, Kuo-Tsang & Hwang, Ruey-Lung, 2016. "Future trends of residential building cooling energy and passive adaptation measures to counteract climate change: The case of Taiwan," Applied Energy, Elsevier, vol. 184(C), pages 1230-1240.
    11. Li, Canbing & Zhou, Jinju & Cao, Yijia & Zhong, Jin & Liu, Yu & Kang, Chongqing & Tan, Yi, 2014. "Interaction between urban microclimate and electric air-conditioning energy consumption during high temperature season," Applied Energy, Elsevier, vol. 117(C), pages 149-156.
    12. Liu, Zhongbing & Zhang, Yelin & Zhang, Ling & Luo, Yongqiang & Wu, Zhenghong & Wu, Jing & Yin, Yingde & Hou, Guoqing, 2018. "Modeling and simulation of a photovoltaic thermal-compound thermoelectric ventilator system," Applied Energy, Elsevier, vol. 228(C), pages 1887-1900.
    13. Ciulla, Giuseppina & Lo Brano, Valerio & D’Amico, Antonino, 2016. "Modelling relationship among energy demand, climate and office building features: A cluster analysis at European level," Applied Energy, Elsevier, vol. 183(C), pages 1021-1034.
    14. Peng, Yuzhen & Rysanek, Adam & Nagy, Zoltán & Schlüter, Arno, 2018. "Using machine learning techniques for occupancy-prediction-based cooling control in office buildings," Applied Energy, Elsevier, vol. 211(C), pages 1343-1358.
    15. Hsu, David, 2015. "Identifying key variables and interactions in statistical models of building energy consumption using regularization," Energy, Elsevier, vol. 83(C), pages 144-155.
    16. Chaudhuri, Tanaya & Soh, Yeng Chai & Li, Hua & Xie, Lihua, 2019. "A feedforward neural network based indoor-climate control framework for thermal comfort and energy saving in buildings," Applied Energy, Elsevier, vol. 248(C), pages 44-53.
    17. Xiaoyue Zhu & Bo Gao & Xudong Yang & Yanping Yuan & Ji Ni, 2021. "Interactions between the Built Environment and the Energy-Related Behaviors of Occupants in Government Office Buildings," Sustainability, MDPI, vol. 13(19), pages 1-21, September.
    18. Jung, Wooyoung & Jazizadeh, Farrokh, 2019. "Human-in-the-loop HVAC operations: A quantitative review on occupancy, comfort, and energy-efficiency dimensions," Applied Energy, Elsevier, vol. 239(C), pages 1471-1508.
    19. Kuo-Liang Lin & Ming-Young Jan & Chien-Sen Liao, 2017. "Energy Consumption Analysis for Concrete Residences—A Baseline Study in Taiwan," Sustainability, MDPI, vol. 9(2), pages 1-13, February.
    20. Qiong He & S. Thomas Ng & Md. Uzzal Hossain & Martin Skitmore, 2019. "Energy-Efficient Window Retrofit for High-Rise Residential Buildings in Different Climatic Zones of China," Sustainability, MDPI, vol. 11(22), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:176:y:2019:i:c:p:418-428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.