IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v80y2017icp1061-1071.html
   My bibliography  Save this article

The impact of occupants’ behaviours on building energy analysis: A research review

Author

Listed:
  • Delzendeh, Elham
  • Wu, Song
  • Lee, Angela
  • Zhou, Ying

Abstract

Over the past 15 years, the evaluation of energy demand and use in buildings has become increasingly acute due to growing scientific and political pressure around the world in response to climate change. The estimation of the use of energy in buildings is therefore a critical process during the design stage. This paper presents a review of the literature published in leading journals through Science Direct and Scopus databases within this research domain to establish research trends, and importantly, to identify research gaps for future investigation. It has been widely acknowledged in the literature that there is an alarming performance gap between the predicted and actual energy consumption of buildings (sometimes this has been up to 300% difference). Analysis of the impact of occupants’ behaviour has been largely overlooked in building energy performance analysis. In short, energy simulation tools utilise climatic data and physical/ thermal properties of building elements in their calculations, and the impact of occupants is only considered through means of fixed and scheduled patterns of behaviour. This research review identified a number of areas for future research including: larger scale analysis (e.g. urban analysis); interior design, in terms of space layout, and fixtures and fittings on occupants’ behaviour; psychological cognitive behavioural methods; and the integration of quantitative and qualitative research findings in energy simulation tools to name but a few.

Suggested Citation

  • Delzendeh, Elham & Wu, Song & Lee, Angela & Zhou, Ying, 2017. "The impact of occupants’ behaviours on building energy analysis: A research review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1061-1071.
  • Handle: RePEc:eee:rensus:v:80:y:2017:i:c:p:1061-1071
    DOI: 10.1016/j.rser.2017.05.264
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117309061
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.05.264?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohamed, Ahmed M.A. & Al-Habaibeh, Amin & Abdo, Hafez & Elabar, Sherifa, 2015. "Towards exporting renewable energy from MENA region to Europe: An investigation into domestic energy use and householders’ energy behaviour in Libya," Applied Energy, Elsevier, vol. 146(C), pages 247-262.
    2. Kazmi, H. & D’Oca, S. & Delmastro, C. & Lodeweyckx, S. & Corgnati, S.P., 2016. "Generalizable occupant-driven optimization model for domestic hot water production in NZEB," Applied Energy, Elsevier, vol. 175(C), pages 1-15.
    3. Schweiker, Marcel & Shukuya, Masanori, 2011. "Investigation on the effectiveness of various methods of information dissemination aiming at a change of occupant behaviour related to thermal comfort and exergy consumption," Energy Policy, Elsevier, vol. 39(1), pages 395-407, January.
    4. Ajzen, Icek, 1991. "The theory of planned behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 50(2), pages 179-211, December.
    5. Aldossary, Naief A. & Rezgui, Yacine & Kwan, Alan, 2014. "Domestic energy consumption patterns in a hot and humid climate: A multiple-case study analysis," Applied Energy, Elsevier, vol. 114(C), pages 353-365.
    6. Aldossary, Naief A. & Rezgui, Yacine & Kwan, Alan, 2014. "Domestic energy consumption patterns in a hot and arid climate: A multiple-case study analysis," Renewable Energy, Elsevier, vol. 62(C), pages 369-378.
    7. Kavousian, Amir & Rajagopal, Ram & Fischer, Martin, 2013. "Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior," Energy, Elsevier, vol. 55(C), pages 184-194.
    8. Harish, V.S.K.V. & Kumar, Arun, 2016. "A review on modeling and simulation of building energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1272-1292.
    9. Langevin, Jared & Gurian, Patrick L. & Wen, Jin, 2013. "Reducing energy consumption in low income public housing: Interviewing residents about energy behaviors," Applied Energy, Elsevier, vol. 102(C), pages 1358-1370.
    10. Yu, Zhun (Jerry) & Haghighat, Fariborz & Fung, Benjamin C.M. & Morofsky, Edward & Yoshino, Hiroshi, 2011. "A methodology for identifying and improving occupant behavior in residential buildings," Energy, Elsevier, vol. 36(11), pages 6596-6608.
    11. Romero, Ramona A. & Bojórquez, Gonzalo & Corral, María & Gallegos, Ricardo, 2013. "Energy and the occupant’s thermal perception of low-income dwellings in hot-dry climate: Mexicali, México," Renewable Energy, Elsevier, vol. 49(C), pages 267-270.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Kaile & Yang, Shanlin, 2016. "Understanding household energy consumption behavior: The contribution of energy big data analytics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 810-819.
    2. Fouladvand, Javanshir & Aranguren Rojas, Maria & Hoppe, Thomas & Ghorbani, Amineh, 2022. "Simulating thermal energy community formation: Institutional enablers outplaying technological choice," Applied Energy, Elsevier, vol. 306(PA).
    3. Pothitou, Mary & Hanna, Richard F. & Chalvatzis, Konstantinos J., 2016. "Environmental knowledge, pro-environmental behaviour and energy savings in households: An empirical study," Applied Energy, Elsevier, vol. 184(C), pages 1217-1229.
    4. Antonio Paone & Jean-Philippe Bacher, 2018. "The Impact of Building Occupant Behavior on Energy Efficiency and Methods to Influence It: A Review of the State of the Art," Energies, MDPI, vol. 11(4), pages 1-19, April.
    5. Chen, Chien-fei & Xu, Xiaojing & Adua, Lazarus & Briggs, Morgan & Nelson, Hannah, 2022. "Exploring the factors that influence energy use intensity across low-, middle-, and high-income households in the United States," Energy Policy, Elsevier, vol. 168(C).
    6. Aldossary, Naief A. & Rezgui, Yacine & Kwan, Alan, 2015. "Consensus-based low carbon domestic design framework for sustainable homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 417-432.
    7. Craig, Christopher A. & Feng, Song, 2017. "Exploring utility organization electricity generation, residential electricity consumption, and energy efficiency: A climatic approach," Applied Energy, Elsevier, vol. 185(P1), pages 779-790.
    8. Baldini, Mattia & Trivella, Alessio & Wente, Jordan William, 2018. "The impact of socioeconomic and behavioural factors for purchasing energy efficient household appliances: A case study for Denmark," Energy Policy, Elsevier, vol. 120(C), pages 503-513.
    9. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    10. Ardeshir Mahdavi & Christiane Berger & Hadeer Amin & Eleni Ampatzi & Rune Korsholm Andersen & Elie Azar & Verena M. Barthelmes & Matteo Favero & Jakob Hahn & Dolaana Khovalyg & Henrik N. Knudsen & Ale, 2021. "The Role of Occupants in Buildings’ Energy Performance Gap: Myth or Reality?," Sustainability, MDPI, vol. 13(6), pages 1-44, March.
    11. Jacqueline Nicole Adams & Zsófia Deme Bélafi & Miklós Horváth & János Balázs Kocsis & Tamás Csoknyai, 2021. "How Smart Meter Data Analysis Can Support Understanding the Impact of Occupant Behavior on Building Energy Performance: A Comprehensive Review," Energies, MDPI, vol. 14(9), pages 1-23, April.
    12. Sergio Gómez Melgar & Miguel Ángel Martínez Bohórquez & José Manuel Andújar Márquez, 2018. "uhuMEB: Design, Construction, and Management Methodology of Minimum Energy Buildings in Subtropical Climates," Energies, MDPI, vol. 11(10), pages 1-34, October.
    13. Craig, Christopher A., 2016. "Energy consumption, energy efficiency, and consumer perceptions: A case study for the Southeast United States," Applied Energy, Elsevier, vol. 165(C), pages 660-669.
    14. Piselli, Cristina & Pisello, Anna Laura, 2019. "Occupant behavior long-term continuous monitoring integrated to prediction models: Impact on office building energy performance," Energy, Elsevier, vol. 176(C), pages 667-681.
    15. Ramli, Makbul A.M. & Twaha, Ssennoga & Al-Hamouz, Zakariya, 2017. "Analyzing the potential and progress of distributed generation applications in Saudi Arabia: The case of solar and wind resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 287-297.
    16. Radwan A. Almasri & Nidal H. Abu-Hamdeh & Abdullah Alajlan & Yazeed Alresheedi, 2022. "Utilizing a Domestic Water Tank to Make the Air Conditioning System in Residential Buildings More Sustainable in Hot Regions," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    17. Alla Polyanska & Maksym Andriiovych & Natalia Generowicz & Joanna Kulczycka & Vladyslav Psyuk, 2022. "Gamification as an Improvement Tool for HR Management in the Energy Industry—A Case Study of the Ukrainian Market," Energies, MDPI, vol. 15(4), pages 1-18, February.
    18. Fujimi, Toshio & Kajitani, Yoshio & Chang, Stephanie E., 2016. "Effective and persistent changes in household energy-saving behaviors: Evidence from post-tsunami Japan," Applied Energy, Elsevier, vol. 167(C), pages 93-106.
    19. Qianwen Li & Ruyin Long & Hong Chen, 2018. "Measurements and Factors That Influence the Carbon Capability of Urban Residents in China," Sustainability, MDPI, vol. 10(4), pages 1-22, April.
    20. Xueying Jia & Hui Zhang & Xin Yao & Lei Yang & Zikang Ke & Junle Yan & Xiaoxi Huang & Shiyu Jin, 2023. "Research on Technology System Adaptability of Nearly Zero-Energy Office Buildings in the Hot Summer and Cold Winter Zone of China," Sustainability, MDPI, vol. 15(17), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:80:y:2017:i:c:p:1061-1071. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.