IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v79y2017icp1353-1379.html
   My bibliography  Save this article

A review of thermal comfort models and indicators for indoor environments

Author

Listed:
  • Enescu, Diana

Abstract

This paper reviews the most used thermal comfort models and indicators with their variants, discussing their usage in control problems referring to energy management in indoor applications. The first part addresses the recent literature referring to the thermal comfort concepts, models of human thermal comfort, thermal comfort models and indicators, thermal comfort standards, control systems, optimisation methods, and practical assessments. Then, the ambient and personal parameters used to represent thermal comfort and thermal sensation are recalled. The following part reviews the definitions and usage of a number of thermal comfort indices, mainly related to the Predicted Mean Vote (PMV), the Actual Mean Vote (AMV), and the Predicted Percentage Dissatisfied (PPD), with their modifications and variants, indicating a number of applications to different situations in indoor environments. The last part reviews the thermal comfort models used to define control strategies in indoor applications, discussing the characteristics and parameters of models based on artificial neural networks, autoregressive variants, fuzzy control, and hybrid models combining different approaches. The characteristics of these models and their usage to predict the indoor air temperature and the PMV index are discussed with reference to the identification of the several inputs used in relevant literature contributions.

Suggested Citation

  • Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
  • Handle: RePEc:eee:rensus:v:79:y:2017:i:c:p:1353-1379
    DOI: 10.1016/j.rser.2017.05.175
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117308109
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.05.175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Croitoru, Cristiana & Nastase, Ilinca & Bode, Florin & Meslem, Amina & Dogeanu, Angel, 2015. "Thermal comfort models for indoor spaces and vehicles—Current capabilities and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 304-318.
    2. Singh, Manoj Kumar & Mahapatra, Sadhan & Atreya, S.K., 2011. "Adaptive thermal comfort model for different climatic zones of North-East India," Applied Energy, Elsevier, vol. 88(7), pages 2420-2428, July.
    3. Evins, Ralph, 2013. "A review of computational optimisation methods applied to sustainable building design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 230-245.
    4. Djongyang, Noël & Tchinda, René & Njomo, Donatien, 2010. "Thermal comfort: A review paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2626-2640, December.
    5. Baird, George & Field, Carmeny, 2013. "Thermal comfort conditions in sustainable buildings – Results of a worldwide survey of users’ perceptions," Renewable Energy, Elsevier, vol. 49(C), pages 44-47.
    6. Sayigh, Ali & Marafia, A. Hamid, 1998. "Chapter 1--Thermal comfort and the development of bioclimatic concept in building design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 2(1-2), pages 3-24, June.
    7. Daigee Shaw & Arwin Pang & Chang-Ching Lin & Ming-Feng Hung, 2010. "Economic growth and air quality in China," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 12(3), pages 79-96, September.
    8. Francisco Zamora-Martínez & Pablo Romeu & Paloma Botella-Rocamora & Juan Pardo, 2013. "Towards Energy Efficiency: Forecasting Indoor Temperature via Multivariate Analysis," Energies, MDPI, vol. 6(9), pages 1-21, September.
    9. Cinzia Buratti & Elisa Lascaro & Domenico Palladino & Marco Vergoni, 2014. "Building Behavior Simulation by Means of Artificial Neural Network in Summer Conditions," Sustainability, MDPI, vol. 6(8), pages 1-15, August.
    10. M.M. Gouda & S. Danaher & C.P. Underwood, 2002. "Application of an Artificial Neural Network for Modelling the Thermal Dynamics of a Building’s Space and its Heating System," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 8(3), pages 333-344, September.
    11. Zomorodian, Zahra Sadat & Tahsildoost, Mohammad & Hafezi, Mohammadreza, 2016. "Thermal comfort in educational buildings: A review article," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 895-906.
    12. Zhao, Hai-xiang & Magoulès, Frédéric, 2012. "A review on the prediction of building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3586-3592.
    13. Taleghani, Mohammad & Tenpierik, Martin & Kurvers, Stanley & van den Dobbelsteen, Andy, 2013. "A review into thermal comfort in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 201-215.
    14. Shaikh, Pervez Hameed & Nor, Nursyarizal Bin Mohd & Nallagownden, Perumal & Elamvazuthi, Irraivan & Ibrahim, Taib, 2014. "A review on optimized control systems for building energy and comfort management of smart sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 409-429.
    15. Martínez-Molina, Antonio & Tort-Ausina, Isabel & Cho, Soolyeon & Vivancos, José-Luis, 2016. "Energy efficiency and thermal comfort in historic buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 70-85.
    16. Orosa, José A. & Oliveira, Armando C., 2011. "A new thermal comfort approach comparing adaptive and PMV models," Renewable Energy, Elsevier, vol. 36(3), pages 951-956.
    17. Kusiak, Andrew & Li, Mingyang & Zheng, Haiyang, 2010. "Virtual models of indoor-air-quality sensors," Applied Energy, Elsevier, vol. 87(6), pages 2087-2094, June.
    18. Veselý, Michal & Zeiler, Wim, 2014. "Personalized conditioning and its impact on thermal comfort and energy performance – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 401-408.
    19. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    20. Kalogirou, Soteris A., 2000. "Applications of artificial neural-networks for energy systems," Applied Energy, Elsevier, vol. 67(1-2), pages 17-35, September.
    21. Butera, Federico M., 1998. "Chapter 3--Principles of thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 2(1-2), pages 39-66, June.
    22. Peeters, Leen & Dear, Richard de & Hensen, Jan & D'haeseleer, William, 2009. "Thermal comfort in residential buildings: Comfort values and scales for building energy simulation," Applied Energy, Elsevier, vol. 86(5), pages 772-780, May.
    23. Mario Collotta & Antonio Messineo & Giuseppina Nicolosi & Giovanni Pau, 2014. "A Dynamic Fuzzy Controller to Meet Thermal Comfort by Using Neural Network Forecasted Parameters as the Input," Energies, MDPI, vol. 7(8), pages 1-30, July.
    24. Khodakarami, Jamal & Nasrollahi, Nazanin, 2012. "Thermal comfort in hospitals – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4071-4077.
    25. von Grabe, Jörn, 2016. "Potential of artificial neural networks to predict thermal sensation votes," Applied Energy, Elsevier, vol. 161(C), pages 412-424.
    26. Dounis, A.I. & Caraiscos, C., 2009. "Advanced control systems engineering for energy and comfort management in a building environment--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1246-1261, August.
    27. Soteris A. Kalogirou, 2006. "Artificial neural networks in energy applications in buildings," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 1(3), pages 201-216, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
    2. Ma, Nan & Aviv, Dorit & Guo, Hongshan & Braham, William W., 2021. "Measuring the right factors: A review of variables and models for thermal comfort and indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Michał Piasecki & Małgorzata Fedorczak-Cisak & Marcin Furtak & Jacek Biskupski, 2019. "Experimental Confirmation of the Reliability of Fanger’s Thermal Comfort Model—Case Study of a Near-Zero Energy Building (NZEB) Office Building," Sustainability, MDPI, vol. 11(9), pages 1-25, April.
    4. Barbeito, Inés & Zaragoza, Sonia & Tarrío-Saavedra, Javier & Naya, Salvador, 2017. "Assessing thermal comfort and energy efficiency in buildings by statistical quality control for autocorrelated data," Applied Energy, Elsevier, vol. 190(C), pages 1-17.
    5. Buratti, C. & Palladino, D. & Ricciardi, P., 2016. "Application of a new 13-value thermal comfort scale to moderate environments," Applied Energy, Elsevier, vol. 180(C), pages 859-866.
    6. Ren, Zhengen & Chen, Dong, 2018. "Modelling study of the impact of thermal comfort criteria on housing energy use in Australia," Applied Energy, Elsevier, vol. 210(C), pages 152-166.
    7. Jin Wei & Fangsi Yu & Haixiu Liang & Maohui Luo, 2020. "Thermal Performance of Vertical Courtyard System in Office Buildings Under Typical Hot Days in Hot-Humid Climate Area: A Case Study," Sustainability, MDPI, vol. 12(7), pages 1-14, March.
    8. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    9. Afroz, Zakia & Shafiullah, GM & Urmee, Tania & Higgins, Gary, 2018. "Modeling techniques used in building HVAC control systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 64-84.
    10. Zhang, Sheng & Lin, Zhang, 2020. "Standard effective temperature based adaptive-rational thermal comfort model," Applied Energy, Elsevier, vol. 264(C).
    11. Halhoul Merabet, Ghezlane & Essaaidi, Mohamed & Ben Haddou, Mohamed & Qolomany, Basheer & Qadir, Junaid & Anan, Muhammad & Al-Fuqaha, Ala & Abid, Mohamed Riduan & Benhaddou, Driss, 2021. "Intelligent building control systems for thermal comfort and energy-efficiency: A systematic review of artificial intelligence-assisted techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    12. Park, June Young & Nagy, Zoltan, 2018. "Comprehensive analysis of the relationship between thermal comfort and building control research - A data-driven literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2664-2679.
    13. Hwang, Jun Kwon & Yun, Geun Young & Lee, Sukho & Seo, Hyeongjoon & Santamouris, Mat, 2020. "Using deep learning approaches with variable selection process to predict the energy performance of a heating and cooling system," Renewable Energy, Elsevier, vol. 149(C), pages 1227-1245.
    14. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    15. Zomorodian, Zahra Sadat & Tahsildoost, Mohammad & Hafezi, Mohammadreza, 2016. "Thermal comfort in educational buildings: A review article," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 895-906.
    16. Tronchin, Lamberto & Manfren, Massimiliano & Nastasi, Benedetto, 2018. "Energy efficiency, demand side management and energy storage technologies – A critical analysis of possible paths of integration in the built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 341-353.
    17. Keyvanfar, Ali & Shafaghat, Arezou & Abd Majid, Muhd Zaimi & Bin Lamit, Hasanuddin & Warid Hussin, Mohd & Binti Ali, Kherun Nita & Dhafer Saad, Alshahri, 2014. "User satisfaction adaptive behaviors for assessing energy efficient building indoor cooling and lighting environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 277-295.
    18. D’Oca, Simona & Hong, Tianzhen & Langevin, Jared, 2018. "The human dimensions of energy use in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 731-742.
    19. Claudia Valderrama-Ulloa & Lorena Silva-Castillo & Catalina Sandoval-Grandi & Carlos Robles-Calderon & Fabien Rouault, 2020. "Indoor Environmental Quality in Latin American Buildings: A Systematic Literature Review," Sustainability, MDPI, vol. 12(2), pages 1-19, January.
    20. Ning, Haoran & Wang, Zhaojun & Ji, Yuchen, 2016. "Thermal history and adaptation: Does a long-term indoor thermal exposure impact human thermal adaptability?," Applied Energy, Elsevier, vol. 183(C), pages 22-30.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:79:y:2017:i:c:p:1353-1379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.