IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v70y2014icp58-67.html
   My bibliography  Save this article

Torrefaction modelling for lignocellulosic biomass conversion processes

Author

Listed:
  • Peduzzi, Emanuela
  • Boissonnet, Guillaume
  • Haarlemmer, Geert
  • Dupont, Capucine
  • Maréchal, François

Abstract

The objective of this study is to develop a model for the description of torrefaction. The model is conceived in the context of process modelling and therefore it aims at providing coherent mass and energy balances of solid and gaseous products, rather than a physical description of the process. The rationale underlying the proposed model stems from the representation of torrefaction and its products on a C–H–O ternary diagram and its focus is the description of the solid product in terms of yield, composition and heating value. The heating value of the gaseous products is determined by considering water, carbon dioxide and acetic acid as the major volatile products and closing the mass balance. It is possible to extend the number of species considered in the torrefaction gases if experimental data regarding the volatile products are available. The proposed model is simple, of easy implementation and calibration, of fast resolution and its results have been validated against experimental data. This work represents the basis for a future evaluation and optimisation of torrefaction as a pretreatment step in the thermo-chemical conversion of biomass.

Suggested Citation

  • Peduzzi, Emanuela & Boissonnet, Guillaume & Haarlemmer, Geert & Dupont, Capucine & Maréchal, François, 2014. "Torrefaction modelling for lignocellulosic biomass conversion processes," Energy, Elsevier, vol. 70(C), pages 58-67.
  • Handle: RePEc:eee:energy:v:70:y:2014:i:c:p:58-67
    DOI: 10.1016/j.energy.2014.03.086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214003508
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.03.086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ptasinski, Krzysztof J. & Prins, Mark J. & Pierik, Anke, 2007. "Exergetic evaluation of biomass gasification," Energy, Elsevier, vol. 32(4), pages 568-574.
    2. Prins, Mark J. & Ptasinski, Krzysztof J. & Janssen, Frans J.J.G., 2006. "More efficient biomass gasification via torrefaction," Energy, Elsevier, vol. 31(15), pages 3458-3470.
    3. Chew, J.J. & Doshi, V., 2011. "Recent advances in biomass pretreatment – Torrefaction fundamentals and technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4212-4222.
    4. Nocquet, Timothée & Dupont, Capucine & Commandre, Jean-Michel & Grateau, Maguelone & Thiery, Sébastien & Salvador, Sylvain, 2014. "Volatile species release during torrefaction of biomass and its macromolecular constituents: Part 2 – Modeling study," Energy, Elsevier, vol. 72(C), pages 188-194.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guizani, Chamseddine & Haddad, Khouloud & Jeguirim, Mejdi & Colin, Baptiste & Limousy, Lionel, 2016. "Combustion characteristics and kinetics of torrefied olive pomace," Energy, Elsevier, vol. 107(C), pages 453-463.
    2. Chai, Meiyun & Xie, Li & Yu, Xi & Zhang, Xingguang & Yang, Yang & Rahman, Md. Maksudur & Blanco, Paula H. & Liu, Ronghou & Bridgwater, Anthony V. & Cai, Junmeng, 2021. "Poplar wood torrefaction: Kinetics, thermochemistry and implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. González Martínez, María & Dupont, Capucine & Anca-Couce, Andrés & da Silva Perez, Denilson & Boissonnet, Guillaume & Thiéry, Sébastien & Meyer, Xuân-mi & Gourdon, Christophe, 2020. "Understanding the torrefaction of woody and agricultural biomasses through their extracted macromolecular components. Part 2: Torrefaction model," Energy, Elsevier, vol. 210(C).
    4. Codignole Luz, Fàbio & Cordiner, Stefano & Manni, Alessandro & Mulone, Vincenzo & Rocco, Vittorio, 2018. "Biomass fast pyrolysis in a shaftless screw reactor: A 1-D numerical model," Energy, Elsevier, vol. 157(C), pages 792-805.
    5. Dai, Leilei & Wang, Yunpu & Liu, Yuhuan & Ruan, Roger & He, Chao & Yu, Zhenting & Jiang, Lin & Zeng, Zihong & Tian, Xiaojie, 2019. "Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 20-36.
    6. Krochmalny, Krystian & Niedzwiecki, Lukasz & Pelińska-Olko, Ewa & Wnukowski, Mateusz & Czajka, Krzysztof & Tkaczuk-Serafin, Monika & Pawlak-Kruczek, Halina, 2020. "Determination of the marker for automation of torrefaction and slow pyrolysis processes – A case study of spherical wood particles," Renewable Energy, Elsevier, vol. 161(C), pages 350-360.
    7. Sermyagina, Ekaterina & Saari, Jussi & Zakeri, Behnam & Kaikko, Juha & Vakkilainen, Esa, 2015. "Effect of heat integration method and torrefaction temperature on the performance of an integrated CHP-torrefaction plant," Applied Energy, Elsevier, vol. 149(C), pages 24-34.
    8. Dahlquist, Erik & Naqvi, Muhammad & Thorin, Eva & Yan, Jinyue & Kyprianidis, Konstantinos & Hartwell, Philip, 2017. "Experimental and numerical investigation of pellet and black liquor gasification for polygeneration plant," Applied Energy, Elsevier, vol. 204(C), pages 1055-1064.
    9. Piotr Piersa & Szymon Szufa & Justyna Czerwińska & Hilal Ünyay & Łukasz Adrian & Grzegorz Wielgosinski & Andrzej Obraniak & Wiktoria Lewandowska & Marta Marczak-Grzesik & Maria Dzikuć & Zdzislawa Roma, 2021. "Pine Wood and Sewage Sludge Torrefaction Process for Production Renewable Solid Biofuels and Biochar as Carbon Carrier for Fertilizers," Energies, MDPI, vol. 14(23), pages 1-27, December.
    10. Park, Chansaem & Zahid, Umer & Lee, Sangho & Han, Chonghun, 2015. "Effect of process operating conditions in the biomass torrefaction: A simulation study using one-dimensional reactor and process model," Energy, Elsevier, vol. 79(C), pages 127-139.
    11. Akbari, Maryam & Oyedun, Adetoyese Olajire & Kumar, Amit, 2020. "Techno-economic assessment of wet and dry torrefaction of biomass feedstock," Energy, Elsevier, vol. 207(C).
    12. Leontiev, Alexandr & Kichatov, Boris & Korshunov, Alexey & Kiverin, Alexey & Medvetskaya, Natalia & Melnikova, Ksenia, 2018. "Oxidative torrefaction of briquetted birch shavings in the bentonite," Energy, Elsevier, vol. 165(PA), pages 303-313.
    13. Dossow, Marcel & Dieterich, Vincent & Hanel, Andreas & Spliethoff, Hartmut & Fendt, Sebastian, 2021. "Improving carbon efficiency for an advanced Biomass-to-Liquid process using hydrogen and oxygen from electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krochmalny, Krystian & Niedzwiecki, Lukasz & Pelińska-Olko, Ewa & Wnukowski, Mateusz & Czajka, Krzysztof & Tkaczuk-Serafin, Monika & Pawlak-Kruczek, Halina, 2020. "Determination of the marker for automation of torrefaction and slow pyrolysis processes – A case study of spherical wood particles," Renewable Energy, Elsevier, vol. 161(C), pages 350-360.
    2. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    3. Moya, Roger & Rodríguez-Zúñiga, Ana & Puente-Urbina, Allen & Gaitán-Álvarez, Johanna, 2018. "Study of light, middle and severe torrefaction and effects of extractives and chemical compositions on torrefaction process by thermogravimetric analysis in five fast-growing plantations of Costa Rica," Energy, Elsevier, vol. 149(C), pages 1-10.
    4. Ping Wang & Bret H. Howard, 2017. "Impact of Thermal Pretreatment Temperatures on Woody Biomass Chemical Composition, Physical Properties and Microstructure," Energies, MDPI, vol. 11(1), pages 1-20, December.
    5. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    6. González Martínez, María & Dupont, Capucine & da Silva Perez, Denilson & Mortha, Gérard & Thiéry, Sébastien & Meyer, Xuân-mi & Gourdon, Christophe, 2020. "Understanding the torrefaction of woody and agricultural biomasses through their extracted macromolecular components. Part 1: Experimental thermogravimetric solid mass loss," Energy, Elsevier, vol. 205(C).
    7. Halina Pawlak-Kruczek & Mateusz Wnukowski & Lukasz Niedzwiecki & Michał Czerep & Mateusz Kowal & Krystian Krochmalny & Jacek Zgóra & Michał Ostrycharczyk & Marcin Baranowski & Wilhelm Jan Tic & Joanna, 2019. "Torrefaction as a Valorization Method Used Prior to the Gasification of Sewage Sludge," Energies, MDPI, vol. 12(1), pages 1-18, January.
    8. Dossow, Marcel & Dieterich, Vincent & Hanel, Andreas & Spliethoff, Hartmut & Fendt, Sebastian, 2021. "Improving carbon efficiency for an advanced Biomass-to-Liquid process using hydrogen and oxygen from electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    9. Sabil, Khalik M. & Aziz, Muafah A. & Lal, Bhajan & Uemura, Yoshimitsu, 2013. "Synthetic indicator on the severity of torrefaction of oil palm biomass residues through mass loss measurement," Applied Energy, Elsevier, vol. 111(C), pages 821-826.
    10. Doddapaneni, Tharaka Rama Krishna C. & Praveenkumar, Ramasamy & Tolvanen, Henrik & Rintala, Jukka & Konttinen, Jukka, 2018. "Techno-economic evaluation of integrating torrefaction with anaerobic digestion," Applied Energy, Elsevier, vol. 213(C), pages 272-284.
    11. Granados, D.A. & Ruiz, R.A. & Vega, L.Y. & Chejne, F., 2017. "Study of reactivity reduction in sugarcane bagasse as consequence of a torrefaction process," Energy, Elsevier, vol. 139(C), pages 818-827.
    12. Recari, J. & Berrueco, C. & Puy, N. & Alier, S. & Bartrolí, J. & Farriol, X., 2017. "Torrefaction of a solid recovered fuel (SRF) to improve the fuel properties for gasification processes," Applied Energy, Elsevier, vol. 203(C), pages 177-188.
    13. Saidur, R. & BoroumandJazi, G. & Mekhilef, S. & Mohammed, H.A., 2012. "A review on exergy analysis of biomass based fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1217-1222.
    14. Fan, Yuyang & Li, Luwei & Tippayawong, Nakorn & Xia, Shengpeng & Cao, Fengzhu & Yang, Xingwei & Zheng, Anqing & Zhao, Zengli & Li, Haibin, 2019. "Quantitative structure-reactivity relationships for pyrolysis and gasification of torrefied xylan," Energy, Elsevier, vol. 188(C).
    15. González Martínez, María & Dupont, Capucine & Anca-Couce, Andrés & da Silva Perez, Denilson & Boissonnet, Guillaume & Thiéry, Sébastien & Meyer, Xuân-mi & Gourdon, Christophe, 2020. "Understanding the torrefaction of woody and agricultural biomasses through their extracted macromolecular components. Part 2: Torrefaction model," Energy, Elsevier, vol. 210(C).
    16. Berrueco, C. & Recari, J. & Güell, B. Matas & Alamo, G. del, 2014. "Pressurized gasification of torrefied woody biomass in a lab scale fluidized bed," Energy, Elsevier, vol. 70(C), pages 68-78.
    17. Wilk, Małgorzata & Magdziarz, Aneta & Kalemba, Izabela, 2015. "Characterisation of renewable fuels' torrefaction process with different instrumental techniques," Energy, Elsevier, vol. 87(C), pages 259-269.
    18. Tsai, Wen-Tien & Lin, Yu-Quan & Tsai, Chi-Hung & Chung, Mei-Hua & Chu, Ming-Hung & Huang, Hung-Ju & Jao, Ya-Hsuan & Yeh, Showin-Ing, 2020. "Conversion of water caltrop husk into torrefied biomass by torrefaction," Energy, Elsevier, vol. 195(C).
    19. Leontiev, Alexandr & Kichatov, Boris & Korshunov, Alexey & Kiverin, Alexey & Medvetskaya, Natalia & Melnikova, Ksenia, 2018. "Oxidative torrefaction of briquetted birch shavings in the bentonite," Energy, Elsevier, vol. 165(PA), pages 303-313.
    20. Wang, Sheng & Bi, Xiaotao & Wang, Shudong, 2015. "Thermodynamic analysis of biomass gasification for biomethane production," Energy, Elsevier, vol. 90(P2), pages 1207-1218.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:70:y:2014:i:c:p:58-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.