IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v149y2015icp24-34.html
   My bibliography  Save this article

Effect of heat integration method and torrefaction temperature on the performance of an integrated CHP-torrefaction plant

Author

Listed:
  • Sermyagina, Ekaterina
  • Saari, Jussi
  • Zakeri, Behnam
  • Kaikko, Juha
  • Vakkilainen, Esa

Abstract

An important factor for industrial-scale implementation of torrefaction – a thermal pre-treatment technology that enhances the fuel characteristics of biomass – is the requirement for a low-cost source of heat energy. Significant benefits can be achieved if torrefaction is integrated with a large heat producer. To study this possibility, a new model for the energy and mass balances of the torrefaction process was developed on the basis of available experimental data. The torrefaction model was then integrated into steam power plant simulations, and the performance of different integration schemes was evaluated. To investigate the effect of plant size and operating mode, the same configurations were studied for both large and small combined heat and power (CHP) plants. Large plant operates at full boiler load, and capturing a portion of heat from the plant reduces the power output for all integration cases. At the same time, higher trigeneration efficiencies in comparison with non-integrated case together with fuel consumption decrease due to torrefaction gas co-firing indicate that integration of torrefaction and CHP plant at full load could be beneficial. In case of small plant, free boiler capacity at reduced-load conditions allows to cover the torrefaction heat demand and simultaneously increase the electricity generation for almost all integration cases. Trigeneration efficiency is changing within a relatively narrow range for most of the cases, while the solid fuel consumption is higher than in design case. This work shows that integration method together with process temperature and plant operation mode are the important factors that could have an effect on CHP plant integration with torrefaction process.

Suggested Citation

  • Sermyagina, Ekaterina & Saari, Jussi & Zakeri, Behnam & Kaikko, Juha & Vakkilainen, Esa, 2015. "Effect of heat integration method and torrefaction temperature on the performance of an integrated CHP-torrefaction plant," Applied Energy, Elsevier, vol. 149(C), pages 24-34.
  • Handle: RePEc:eee:appene:v:149:y:2015:i:c:p:24-34
    DOI: 10.1016/j.apenergy.2015.03.102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915004043
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.03.102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kohl, Thomas & Laukkanen, Timo & Järvinen, Mika & Fogelholm, Carl-Johan, 2013. "Energetic and environmental performance of three biomass upgrading processes integrated with a CHP plant," Applied Energy, Elsevier, vol. 107(C), pages 124-134.
    2. Zhou, Wei & Yang, Hongxing & Rissanen, Markku & Nygren, Bertil & Yan, Jinyue, 2012. "Decrease of energy demand for bioethanol-based polygeneration system through case study," Applied Energy, Elsevier, vol. 95(C), pages 305-311.
    3. Peduzzi, Emanuela & Boissonnet, Guillaume & Haarlemmer, Geert & Dupont, Capucine & Maréchal, François, 2014. "Torrefaction modelling for lignocellulosic biomass conversion processes," Energy, Elsevier, vol. 70(C), pages 58-67.
    4. Larsson, Sylvia H. & Rudolfsson, Magnus & Nordwaeger, Martin & Olofsson, Ingemar & Samuelsson, Robert, 2013. "Effects of moisture content, torrefaction temperature, and die temperature in pilot scale pelletizing of torrefied Norway spruce," Applied Energy, Elsevier, vol. 102(C), pages 827-832.
    5. Lamers, Patrick & Junginger, Martin & Hamelinck, Carlo & Faaij, André, 2012. "Developments in international solid biofuel trade—An analysis of volumes, policies, and market factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3176-3199.
    6. Chen, Wei-Hsin & Kuo, Po-Chih, 2011. "Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass," Energy, Elsevier, vol. 36(2), pages 803-811.
    7. Djuric Ilic, Danica & Dotzauer, Erik & Trygg, Louise, 2012. "District heating and ethanol production through polygeneration in Stockholm," Applied Energy, Elsevier, vol. 91(1), pages 214-221.
    8. Prins, Mark J. & Ptasinski, Krzysztof J. & Janssen, Frans J.J.G., 2006. "More efficient biomass gasification via torrefaction," Energy, Elsevier, vol. 31(15), pages 3458-3470.
    9. Dorde Medic & Matthew Darr & Ajay Shah & Sarah Rahn, 2012. "The Effects of Particle Size, Different Corn Stover Components, and Gas Residence Time on Torrefaction of Corn Stover," Energies, MDPI, vol. 5(4), pages 1-16, April.
    10. Brammer, J. G. & Bridgwater, A. V., 1999. "Drying technologies for an integrated gasification bio-energy plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 3(4), pages 243-289, December.
    11. Li, Jun & Brzdekiewicz, Artur & Yang, Weihong & Blasiak, Wlodzimierz, 2012. "Co-firing based on biomass torrefaction in a pulverized coal boiler with aim of 100% fuel switching," Applied Energy, Elsevier, vol. 99(C), pages 344-354.
    12. Starfelt, Fredrik & Daianova, Lilia & Yan, Jinyue & Thorin, Eva & Dotzauer, Erik, 2012. "The impact of lignocellulosic ethanol yields in polygeneration with district heating – A case study," Applied Energy, Elsevier, vol. 92(C), pages 791-799.
    13. Uslu, Ayla & Faaij, André P.C. & Bergman, P.C.A., 2008. "Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation," Energy, Elsevier, vol. 33(8), pages 1206-1223.
    14. Eriksson, Gunnar & Kjellström, Björn, 2010. "Assessment of combined heat and power (CHP) integrated with wood-based ethanol production," Applied Energy, Elsevier, vol. 87(12), pages 3632-3641, December.
    15. Fahlén, E. & Ahlgren, E.O., 2009. "Assessment of integration of different biomass gasification alternatives in a district-heating system," Energy, Elsevier, vol. 34(12), pages 2184-2195.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    2. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Gunarathne, Duleeka Sandamali & Mellin, Pelle & Yang, Weihong & Pettersson, Magnus & Ljunggren, Rolf, 2016. "Performance of an effectively integrated biomass multi-stage gasification system and a steel industry heat treatment furnace," Applied Energy, Elsevier, vol. 170(C), pages 353-361.
    4. Nobre, Catarina & Vilarinho, Cândida & Alves, Octávio & Mendes, Benilde & Gonçalves, Margarida, 2019. "Upgrading of refuse derived fuel through torrefaction and carbonization: Evaluation of RDF char fuel properties," Energy, Elsevier, vol. 181(C), pages 66-76.
    5. Saari, Jussi & Sermyagina, Ekaterina & Kaikko, Juha & Vakkilainen, Esa & Sergeev, Vitaly, 2016. "Integration of hydrothermal carbonization and a CHP plant: Part 2 –operational and economic analysis," Energy, Elsevier, vol. 113(C), pages 574-585.
    6. Catarina Viegas & Catarina Nobre & Ricardo Correia & Luísa Gouveia & Margarida Gonçalves, 2021. "Optimization of Biochar Production by Co-Torrefaction of Microalgae and Lignocellulosic Biomass Using Response Surface Methodology," Energies, MDPI, vol. 14(21), pages 1-23, November.
    7. Parkhurst, Kristen M. & Saffron, Christopher M. & Miller, Raymond O., 2016. "An energy analysis comparing biomass torrefaction in depots to wind with natural gas combustion for electricity generation," Applied Energy, Elsevier, vol. 179(C), pages 171-181.
    8. Chai, Meiyun & Xie, Li & Yu, Xi & Zhang, Xingguang & Yang, Yang & Rahman, Md. Maksudur & Blanco, Paula H. & Liu, Ronghou & Bridgwater, Anthony V. & Cai, Junmeng, 2021. "Poplar wood torrefaction: Kinetics, thermochemistry and implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    9. Director, L.B. & Sinelshchikov, V.A., 2019. "Numerical modeling of torrefaction reactor integrated in energy technological complex," Energy, Elsevier, vol. 167(C), pages 1194-1204.
    10. Doddapaneni, Tharaka Rama Krishna C. & Praveenkumar, Ramasamy & Tolvanen, Henrik & Rintala, Jukka & Konttinen, Jukka, 2018. "Techno-economic evaluation of integrating torrefaction with anaerobic digestion," Applied Energy, Elsevier, vol. 213(C), pages 272-284.
    11. Dai, Leilei & Wang, Yunpu & Liu, Yuhuan & Ruan, Roger & He, Chao & Yu, Zhenting & Jiang, Lin & Zeng, Zihong & Tian, Xiaojie, 2019. "Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 20-36.
    12. Sermyagina, Ekaterina & Saari, Jussi & Kaikko, Juha & Vakkilainen, Esa, 2016. "Integration of torrefaction and CHP plant: Operational and economic analysis," Applied Energy, Elsevier, vol. 183(C), pages 88-99.
    13. Arteaga-Pérez, Luis E. & Segura, Cristina & Bustamante-García, Verónica & Gómez Cápiro, Oscar & Jiménez, Romel, 2015. "Torrefaction of wood and bark from Eucalyptus globulus and Eucalyptus nitens: Focus on volatile evolution vs feasible temperatures," Energy, Elsevier, vol. 93(P2), pages 1731-1741.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kohl, Thomas & Laukkanen, Timo & Järvinen, Mika & Fogelholm, Carl-Johan, 2013. "Energetic and environmental performance of three biomass upgrading processes integrated with a CHP plant," Applied Energy, Elsevier, vol. 107(C), pages 124-134.
    2. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    3. Sermyagina, Ekaterina & Saari, Jussi & Kaikko, Juha & Vakkilainen, Esa, 2016. "Integration of torrefaction and CHP plant: Operational and economic analysis," Applied Energy, Elsevier, vol. 183(C), pages 88-99.
    4. Abdulyekeen, Kabir Abogunde & Umar, Ahmad Abulfathi & Patah, Muhamad Fazly Abdul & Daud, Wan Mohd Ashri Wan, 2021. "Torrefaction of biomass: Production of enhanced solid biofuel from municipal solid waste and other types of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Krochmalny, Krystian & Niedzwiecki, Lukasz & Pelińska-Olko, Ewa & Wnukowski, Mateusz & Czajka, Krzysztof & Tkaczuk-Serafin, Monika & Pawlak-Kruczek, Halina, 2020. "Determination of the marker for automation of torrefaction and slow pyrolysis processes – A case study of spherical wood particles," Renewable Energy, Elsevier, vol. 161(C), pages 350-360.
    6. Chen, Wei-Hsin & Kuo, Po-Chih & Liu, Shih-Hsien & Wu, Wei, 2014. "Thermal characterization of oil palm fiber and eucalyptus in torrefaction," Energy, Elsevier, vol. 71(C), pages 40-48.
    7. Agar, David A. & Rudolfsson, Magnus & Lavergne, Simon & Melkior, Thierry & Da Silva Perez, Denilson & Dupont, Capucine & Campargue, Matthieu & Kalén, Gunnar & Larsson, Sylvia H., 2021. "Pelleting torrefied biomass at pilot-scale – Quality and implications for co-firing," Renewable Energy, Elsevier, vol. 178(C), pages 766-774.
    8. Hao Luo & Lukasz Niedzwiecki & Amit Arora & Krzysztof Mościcki & Halina Pawlak-Kruczek & Krystian Krochmalny & Marcin Baranowski & Mayank Tiwari & Anshul Sharma & Tanuj Sharma & Zhimin Lu, 2020. "Influence of Torrefaction and Pelletizing of Sawdust on the Design Parameters of a Fixed Bed Gasifier," Energies, MDPI, vol. 13(11), pages 1-19, June.
    9. Chai, Li & Saffron, Christopher M., 2016. "Comparing pelletization and torrefaction depots: Optimization of depot capacity and biomass moisture to determine the minimum production cost," Applied Energy, Elsevier, vol. 163(C), pages 387-395.
    10. Tran, Khanh-Quang & Luo, Xun & Seisenbaeva, Gulaim & Jirjis, Raida, 2013. "Stump torrefaction for bioenergy application," Applied Energy, Elsevier, vol. 112(C), pages 539-546.
    11. Daraei, Mahsa & Avelin, Anders & Dotzauer, Erik & Thorin, Eva, 2019. "Evaluation of biofuel production integrated with existing CHP plants and the impacts on production planning of the system – A case study," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    12. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    13. Rudolfsson, Magnus & Stelte, Wolfgang & Lestander, Torbjörn A., 2015. "Process optimization of combined biomass torrefaction and pelletization for fuel pellet production – A parametric study," Applied Energy, Elsevier, vol. 140(C), pages 378-384.
    14. Niu, Yanqing & Lv, Yuan & Lei, Yu & Liu, Siqi & Liang, Yang & Wang, Denghui & Hui, Shi'en, 2019. "Biomass torrefaction: properties, applications, challenges, and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    15. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2014. "A review on torrefied biomass pellets as a sustainable alternative to coal in power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 153-160.
    16. Saari, Jussi & Sermyagina, Ekaterina & Kaikko, Juha & Vakkilainen, Esa & Sergeev, Vitaly, 2016. "Integration of hydrothermal carbonization and a CHP plant: Part 2 –operational and economic analysis," Energy, Elsevier, vol. 113(C), pages 574-585.
    17. Park, Chansaem & Zahid, Umer & Lee, Sangho & Han, Chonghun, 2015. "Effect of process operating conditions in the biomass torrefaction: A simulation study using one-dimensional reactor and process model," Energy, Elsevier, vol. 79(C), pages 127-139.
    18. Chai, Meiyun & Xie, Li & Yu, Xi & Zhang, Xingguang & Yang, Yang & Rahman, Md. Maksudur & Blanco, Paula H. & Liu, Ronghou & Bridgwater, Anthony V. & Cai, Junmeng, 2021. "Poplar wood torrefaction: Kinetics, thermochemistry and implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    19. Natalia Kabalina & Mário Costa & Weihong Yang & Andrew Martin, 2016. "Production of Synthetic Natural Gas from Refuse-Derived Fuel Gasification for Use in a Polygeneration District Heating and Cooling System," Energies, MDPI, vol. 9(12), pages 1-14, December.
    20. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:149:y:2015:i:c:p:24-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.