IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v114y2019ic43.html
   My bibliography  Save this article

A deep learning algorithm to estimate hourly global solar radiation from geostationary satellite data

Author

Listed:
  • Jiang, Hou
  • Lu, Ning
  • Qin, Jun
  • Tang, Wenjun
  • Yao, Ling

Abstract

To apply deep learning technique for estimating hourly global solar radiation (GSR) from geostationary satellite observations, a hybrid deep network is proposed, relying on convolutional neural network (CNN) to extract spatial pattern from satellite imagery, multi-layer perceptron (MLP) to link the abstract patterns and additional time/location information to target hourly GSR. Its representative advantage lies in the ability to characterize changeable cloud morphology and simulate complex non-linear relationships. The deep network is trained using ground measured GSR values at 90 Chinese radiation stations in 2008 as well as the radiative transfer model simulation at the top of Mt. Everest which serves as constraints of extrapolation for high elevation regions. The extensibility of trained network is validated at 5 independent stations in 2008, yielding an overall coefficient of determination (R2) of 0.82, and at all stations in 2007 along with an R2 of 0.88. Comparative experiments confirm that the combination of spatial pattern and point information can lead to more accurate estimation of hourly GSR, achieving a minimum root mean square error (RMSE) of 84.18 W/m2 (0.30 MJ/m2), 1.92 MJ/m2 and 1.08 MJ/m2 in hourly, daily total and monthly total scales, respectively. Moreover, the deep network is capable of mapping spatially continuous hourly GSR which reflects the regional differences and reproduce the diurnal cycles of solar radiation properly.

Suggested Citation

  • Jiang, Hou & Lu, Ning & Qin, Jun & Tang, Wenjun & Yao, Ling, 2019. "A deep learning algorithm to estimate hourly global solar radiation from geostationary satellite data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
  • Handle: RePEc:eee:rensus:v:114:y:2019:i:c:43
    DOI: 10.1016/j.rser.2019.109327
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119305350
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109327?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Linares-Rodriguez, Alvaro & Ruiz-Arias, José Antonio & Pozo-Vazquez, David & Tovar-Pescador, Joaquin, 2013. "An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images," Energy, Elsevier, vol. 61(C), pages 636-645.
    2. Senkal, Ozan & Kuleli, Tuncay, 2009. "Estimation of solar radiation over Turkey using artificial neural network and satellite data," Applied Energy, Elsevier, vol. 86(7-8), pages 1222-1228, July.
    3. Janjai, S. & Pankaew, P. & Laksanaboonsong, J. & Kitichantaropas, P., 2011. "Estimation of solar radiation over Cambodia from long-term satellite data," Renewable Energy, Elsevier, vol. 36(4), pages 1214-1220.
    4. Jianping Huang & Haipeng Yu & Xiaodan Guan & Guoyin Wang & Ruixia Guo, 2016. "Accelerated dryland expansion under climate change," Nature Climate Change, Nature, vol. 6(2), pages 166-171, February.
    5. Behrang, M.A. & Assareh, E. & Noghrehabadi, A.R. & Ghanbarzadeh, A., 2011. "New sunshine-based models for predicting global solar radiation using PSO (particle swarm optimization) technique," Energy, Elsevier, vol. 36(5), pages 3036-3049.
    6. Qin, Jun & Chen, Zhuoqi & Yang, Kun & Liang, Shunlin & Tang, Wenjun, 2011. "Estimation of monthly-mean daily global solar radiation based on MODIS and TRMM products," Applied Energy, Elsevier, vol. 88(7), pages 2480-2489, July.
    7. Zarzalejo, Luis F. & Ramirez, Lourdes & Polo, Jesus, 2005. "Artificial intelligence techniques applied to hourly global irradiance estimation from satellite-derived cloud index," Energy, Elsevier, vol. 30(9), pages 1685-1697.
    8. Oliver, M. & Jackson, T., 2001. "Energy and economic evaluation of building-integrated photovoltaics," Energy, Elsevier, vol. 26(4), pages 431-439.
    9. Lu, Ning & Qin, Jun & Yang, Kun & Sun, Jiulin, 2011. "A simple and efficient algorithm to estimate daily global solar radiation from geostationary satellite data," Energy, Elsevier, vol. 36(5), pages 3179-3188.
    10. Markus Reichstein & Gustau Camps-Valls & Bjorn Stevens & Martin Jung & Joachim Denzler & Nuno Carvalhais & Prabhat, 2019. "Deep learning and process understanding for data-driven Earth system science," Nature, Nature, vol. 566(7743), pages 195-204, February.
    11. Elminir, Hamdy K. & Azzam, Yosry A. & Younes, Farag I., 2007. "Prediction of hourly and daily diffuse fraction using neural network, as compared to linear regression models," Energy, Elsevier, vol. 32(8), pages 1513-1523.
    12. Kumar, Ravinder & Umanand, L., 2005. "Estimation of global radiation using clearness index model for sizing photovoltaic system," Renewable Energy, Elsevier, vol. 30(15), pages 2221-2233.
    13. Hassan, Gasser E. & Youssef, M. Elsayed & Mohamed, Zahraa E. & Ali, Mohamed A. & Hanafy, Ahmed A., 2016. "New Temperature-based Models for Predicting Global Solar Radiation," Applied Energy, Elsevier, vol. 179(C), pages 437-450.
    14. Jiang, Yingni, 2009. "Computation of monthly mean daily global solar radiation in China using artificial neural networks and comparison with other empirical models," Energy, Elsevier, vol. 34(9), pages 1276-1283.
    15. Kalogirou, Soteris A., 2000. "Applications of artificial neural-networks for energy systems," Applied Energy, Elsevier, vol. 67(1-2), pages 17-35, September.
    16. Benghanem, Mohamed & Mellit, Adel, 2010. "Radial Basis Function Network-based prediction of global solar radiation data: Application for sizing of a stand-alone photovoltaic system at Al-Madinah, Saudi Arabia," Energy, Elsevier, vol. 35(9), pages 3751-3762.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yujun & Yao, Ling & Jiang, Hou & Lu, Ning & Qin, Jun & Liu, Tang & Zhou, Chenghu, 2022. "Spatial estimation of the optimum PV tilt angles in China by incorporating ground with satellite data," Renewable Energy, Elsevier, vol. 189(C), pages 1249-1258.
    2. Ruan, Zhaohui & Sun, Weiwei & Yuan, Yuan & Tan, Heping, 2023. "Accurately forecasting solar radiation distribution at both spatial and temporal dimensions simultaneously with fully-convolutional deep neural network model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    3. Liu, Jingxuan & Zang, Haixiang & Zhang, Fengchun & Cheng, Lilin & Ding, Tao & Wei, Zhinong & Sun, Guoqiang, 2023. "A hybrid meteorological data simulation framework based on time-series generative adversarial network for global daily solar radiation estimation," Renewable Energy, Elsevier, vol. 219(P1).
    4. Tan, Yunhui & Wang, Quan & Zhang, Zhaoyang, 2023. "Near-real-time estimation of global horizontal irradiance from Himawari-8 satellite data," Renewable Energy, Elsevier, vol. 215(C).
    5. Chu, Yinghao & Wang, Yiling & Yang, Dazhi & Chen, Shanlin & Li, Mengying, 2024. "A review of distributed solar forecasting with remote sensing and deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    6. Liu, Jingxuan & Zang, Haixiang & Ding, Tao & Cheng, Lilin & Wei, Zhinong & Sun, Guoqiang, 2023. "Harvesting spatiotemporal correlation from sky image sequence to improve ultra-short-term solar irradiance forecasting," Renewable Energy, Elsevier, vol. 209(C), pages 619-631.
    7. Jiang, Hou & Lu, Ning & Yao, Ling & Qin, Jun & Liu, Tang, 2023. "Impact of climate changes on the stability of solar energy: Evidence from observations and reanalysis," Renewable Energy, Elsevier, vol. 208(C), pages 726-736.
    8. Shao, Guomin & Han, Wenting & Zhang, Huihui & Liu, Shouyang & Wang, Yi & Zhang, Liyuan & Cui, Xin, 2021. "Mapping maize crop coefficient Kc using random forest algorithm based on leaf area index and UAV-based multispectral vegetation indices," Agricultural Water Management, Elsevier, vol. 252(C).
    9. Qin, Jun & Jiang, Hou & Lu, Ning & Yao, Ling & Zhou, Chenghu, 2022. "Enhancing solar PV output forecast by integrating ground and satellite observations with deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    10. Shao, Changkun & Yang, Kun & Tang, Wenjun & He, Yanyi & Jiang, Yaozhi & Lu, Hui & Fu, Haohuan & Zheng, Juepeng, 2022. "Convolutional neural network-based homogenization for constructing a long-term global surface solar radiation dataset," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    11. Ren, Simiao & Hu, Wayne & Bradbury, Kyle & Harrison-Atlas, Dylan & Malaguzzi Valeri, Laura & Murray, Brian & Malof, Jordan M., 2022. "Automated Extraction of Energy Systems Information from Remotely Sensed Data: A Review and Analysis," Applied Energy, Elsevier, vol. 326(C).
    12. Chen, Jiang & Zhu, Weining & Yu, Qian, 2021. "Estimating half-hourly solar radiation over the Continental United States using GOES-16 data with iterative random forest," Renewable Energy, Elsevier, vol. 178(C), pages 916-929.
    13. Jiang, Hou & Lu, Ning & Huang, Guanghui & Yao, Ling & Qin, Jun & Liu, Hengzi, 2020. "Spatial scale effects on retrieval accuracy of surface solar radiation using satellite data," Applied Energy, Elsevier, vol. 270(C).
    14. Elena Esposito & Gianni Leanza & Girolamo Di Francia, 2024. "Comparative Analysis of Ground-Based Solar Irradiance Measurements and Copernicus Satellite Observations," Energies, MDPI, vol. 17(7), pages 1-21, March.
    15. Narvaez, Gabriel & Giraldo, Luis Felipe & Bressan, Michael & Pantoja, Andres, 2021. "Machine learning for site-adaptation and solar radiation forecasting," Renewable Energy, Elsevier, vol. 167(C), pages 333-342.
    16. Chen, Shanlin & Li, Chengxi & Xie, Yuying & Li, Mengying, 2023. "Global and direct solar irradiance estimation using deep learning and selected spectral satellite images," Applied Energy, Elsevier, vol. 352(C).
    17. Lu, Yunbo & Wang, Lunche & Zhu, Canming & Zou, Ling & Zhang, Ming & Feng, Lan & Cao, Qian, 2023. "Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    18. Shi, Hongrong & Yang, Dazhi & Wang, Wenting & Fu, Disong & Gao, Ling & Zhang, Jinqiang & Hu, Bo & Shan, Yunpeng & Zhang, Yingjie & Bian, Yuxuan & Chen, Hongbin & Xia, Xiangao, 2023. "First estimation of high-resolution solar photovoltaic resource maps over China with Fengyun-4A satellite and machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    19. Jiang, Hou & Yao, Ling & Lu, Ning & Qin, Jun & Zhang, Xiaotong & Liu, Tang & Zhang, Xingxing & Zhou, Chenghu, 2024. "Exploring the optimization of rooftop photovoltaic scale and spatial layout under curtailment constraints," Energy, Elsevier, vol. 293(C).
    20. Fan, Junliang & Zheng, Jing & Wu, Lifeng & Zhang, Fucang, 2021. "Estimation of daily maize transpiration using support vector machines, extreme gradient boosting, artificial and deep neural networks models," Agricultural Water Management, Elsevier, vol. 245(C).
    21. Jiang, Hou & Lu, Ning & Qin, Jun & Yao, Ling, 2021. "Hierarchical identification of solar radiation zones in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    22. Gao, Yuan & Hu, Zehuan & Chen, Wei-An & Liu, Mingzhe, 2024. "Solutions to the insufficiency of label data in renewable energy forecasting: A comparative and integrative analysis of domain adaptation and fine-tuning," Energy, Elsevier, vol. 302(C).
    23. Hou Jiang & Ning Lu & Xuecheng Wang, 2023. "Assessing Carbon Reduction Potential of Rooftop PV in China through Remote Sensing Data-Driven Simulations," Sustainability, MDPI, vol. 15(4), pages 1-16, February.
    24. Jiang, Hou & Zhang, Xiaotong & Yao, Ling & Lu, Ning & Qin, Jun & Liu, Tang & Zhou, Chenghu, 2023. "High-resolution analysis of rooftop photovoltaic potential based on hourly generation simulations and load profiles," Applied Energy, Elsevier, vol. 348(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linares-Rodriguez, Alvaro & Ruiz-Arias, José Antonio & Pozo-Vazquez, David & Tovar-Pescador, Joaquin, 2013. "An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images," Energy, Elsevier, vol. 61(C), pages 636-645.
    2. Zhang, Jianyuan & Zhao, Li & Deng, Shuai & Xu, Weicong & Zhang, Ying, 2017. "A critical review of the models used to estimate solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 314-329.
    3. Bikhtiyar Ameen & Heiko Balzter & Claire Jarvis & James Wheeler, 2019. "Modelling Hourly Global Horizontal Irradiance from Satellite-Derived Datasets and Climate Variables as New Inputs with Artificial Neural Networks," Energies, MDPI, vol. 12(1), pages 1-28, January.
    4. Lu, Ning & Qin, Jun & Yang, Kun & Sun, Jiulin, 2011. "A simple and efficient algorithm to estimate daily global solar radiation from geostationary satellite data," Energy, Elsevier, vol. 36(5), pages 3179-3188.
    5. Linares-Rodríguez, Alvaro & Ruiz-Arias, José Antonio & Pozo-Vázquez, David & Tovar-Pescador, Joaquín, 2011. "Generation of synthetic daily global solar radiation data based on ERA-Interim reanalysis and artificial neural networks," Energy, Elsevier, vol. 36(8), pages 5356-5365.
    6. Teke, Ahmet & Yıldırım, H. Başak & Çelik, Özgür, 2015. "Evaluation and performance comparison of different models for the estimation of solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1097-1107.
    7. Jiang, Hou & Lu, Ning & Huang, Guanghui & Yao, Ling & Qin, Jun & Liu, Hengzi, 2020. "Spatial scale effects on retrieval accuracy of surface solar radiation using satellite data," Applied Energy, Elsevier, vol. 270(C).
    8. Voyant, Cyril & Muselli, Marc & Paoli, Christophe & Nivet, Marie-Laure, 2011. "Optimization of an artificial neural network dedicated to the multivariate forecasting of daily global radiation," Energy, Elsevier, vol. 36(1), pages 348-359.
    9. Deo, Ravinesh C. & Şahin, Mehmet, 2017. "Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 828-848.
    10. Mostafavi, Elham Sadat & Ramiyani, Sara Saeidi & Sarvar, Rahim & Moud, Hashem Izadi & Mousavi, Seyyed Mohammad, 2013. "A hybrid computational approach to estimate solar global radiation: An empirical evidence from Iran," Energy, Elsevier, vol. 49(C), pages 204-210.
    11. Mohamed A. Ali & Ashraf Elsayed & Islam Elkabani & Mohammad Akrami & M. Elsayed Youssef & Gasser E. Hassan, 2023. "Optimizing Artificial Neural Networks for the Accurate Prediction of Global Solar Radiation: A Performance Comparison with Conventional Methods," Energies, MDPI, vol. 16(17), pages 1-30, August.
    12. Escrig, H. & Batlles, F.J. & Alonso, J. & Baena, F.M. & Bosch, J.L. & Salbidegoitia, I.B. & Burgaleta, J.I., 2013. "Cloud detection, classification and motion estimation using geostationary satellite imagery for cloud cover forecast," Energy, Elsevier, vol. 55(C), pages 853-859.
    13. Mohanty, Sthitapragyan & Patra, Prashanta Kumar & Sahoo, Sudhansu Sekhar, 2016. "Prediction and application of solar radiation with soft computing over traditional and conventional approach – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 778-796.
    14. Shubham Gupta & Amit Kumar Singh & Sachin Mishra & Pradeep Vishnuram & Nagaraju Dharavat & Narayanamoorthi Rajamanickam & Ch. Naga Sai Kalyan & Kareem M. AboRas & Naveen Kumar Sharma & Mohit Bajaj, 2023. "Estimation of Solar Radiation with Consideration of Terrestrial Losses at a Selected Location—A Review," Sustainability, MDPI, vol. 15(13), pages 1-29, June.
    15. Yadav, Amit Kumar & Malik, Hasmat & Chandel, S.S., 2014. "Selection of most relevant input parameters using WEKA for artificial neural network based solar radiation prediction models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 509-519.
    16. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    17. Işık, Erdem & Inallı, Mustafa, 2018. "Artificial neural networks and adaptive neuro-fuzzy inference systems approaches to forecast the meteorological data for HVAC: The case of cities for Turkey," Energy, Elsevier, vol. 154(C), pages 7-16.
    18. Ayodele, T.R. & Ogunjuyigbe, A.S.O., 2015. "Prediction of monthly average global solar radiation based on statistical distribution of clearness index," Energy, Elsevier, vol. 90(P2), pages 1733-1742.
    19. Deo, Ravinesh C. & Şahin, Mehmet & Adamowski, Jan F. & Mi, Jianchun, 2019. "Universally deployable extreme learning machines integrated with remotely sensed MODIS satellite predictors over Australia to forecast global solar radiation: A new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 235-261.
    20. Deo, Ravinesh C. & Wen, Xiaohu & Qi, Feng, 2016. "A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset," Applied Energy, Elsevier, vol. 168(C), pages 568-593.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:114:y:2019:i:c:43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.