IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v252y2021ics0378377421001712.html
   My bibliography  Save this article

Mapping maize crop coefficient Kc using random forest algorithm based on leaf area index and UAV-based multispectral vegetation indices

Author

Listed:
  • Shao, Guomin
  • Han, Wenting
  • Zhang, Huihui
  • Liu, Shouyang
  • Wang, Yi
  • Zhang, Liyuan
  • Cui, Xin

Abstract

Rapid and accurate acquisition of crop coefficient (Kc) values is essential for estimating field crop evapotranspiration (ET). The lack of rapid access to the high-resolution spatial and temporal distribution of Kc values hinders obtaining a crop Kc value for application in precision irrigation agriculture. This study aimed to explore the potential of leaf area index (LAI) and multispectral vegetation indices (VIs) obtained by an unmanned aerial vehicle (UAV) for estimating the Kc value for a maize crop on a field scale and to obtain a high-resolution spatial-temporal map of Kc values. Hence, the performance of the estimation model for daily maize Kc derived by two machine learning algorithms (random forest regression-RFR and multiple linear regression-MLR) based on the ground-based LAI and six types of UAV-based multispectral VIs (normalized difference vegetation index, NDVI; soil adjusted vegetation index, SAVI; enhanced vegetation index, EVI; transformed chlorophyll absorption in reflectance index, TCARI; green normalized vegetation index, GNDVI; and visual atmospheric resistance index, VARI), was evaluated under multiple irrigation conditions during the entire cropping cycle. Maize RFR with VIs-LAI-based ET was compared to soil water balance (SWB) and FAO-56-based ET. The results showed that the RFR algorithm effectively (R2 = 0.65) estimated maize Kc values based on ground-based LAI and UAV-based VIs. The UAV-based VIs based on Red-edge-Red and Green-Red spectral bands and ground-based LAI were suitable predictors in the Kc prediction model under different irrigation conditions. Further, we successfully obtained a high resolution (pixel size of centimeter) spatial distribution of maize Kc values based on EVI-based LAI and UAV-based VIs. Furthermore, the results indicated that the combination of UAV multispectral remote sensing technology and the RFR algorithm provides a potential solution for the distribution of water use and precision irrigation on a field scale.

Suggested Citation

  • Shao, Guomin & Han, Wenting & Zhang, Huihui & Liu, Shouyang & Wang, Yi & Zhang, Liyuan & Cui, Xin, 2021. "Mapping maize crop coefficient Kc using random forest algorithm based on leaf area index and UAV-based multispectral vegetation indices," Agricultural Water Management, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:agiwat:v:252:y:2021:i:c:s0378377421001712
    DOI: 10.1016/j.agwat.2021.106906
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421001712
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.106906?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duchemin, B. & Hadria, R. & Erraki, S. & Boulet, G. & Maisongrande, P. & Chehbouni, A. & Escadafal, R. & Ezzahar, J. & Hoedjes, J.C.B. & Kharrou, M.H. & Khabba, S. & Mougenot, B. & Olioso, A. & Rodrig, 2006. "Monitoring wheat phenology and irrigation in Central Morocco: On the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices," Agricultural Water Management, Elsevier, vol. 79(1), pages 1-27, January.
    2. Paredes, Paula & Pereira, Luis S. & Rodrigues, Gonçalo C. & Botelho, Nuno & Torres, Maria Odete, 2017. "Using the FAO dual crop coefficient approach to model water use and productivity of processing pea (Pisum sativum L.) as influenced by irrigation strategies," Agricultural Water Management, Elsevier, vol. 189(C), pages 5-18.
    3. Qiu, Rangjian & Du, Taisheng & Kang, Shaozhong & Chen, Renqiang & Wu, Laosheng, 2015. "Assessing the SIMDualKc model for estimating evapotranspiration of hot pepper grown in a solar greenhouse in Northwest China," Agricultural Systems, Elsevier, vol. 138(C), pages 1-9.
    4. Ding, Risheng & Kang, Shaozhong & Li, Fusheng & Zhang, Yanqun & Tong, Ling & Sun, Qingyu, 2010. "Evaluating eddy covariance method by large-scale weighing lysimeter in a maize field of northwest China," Agricultural Water Management, Elsevier, vol. 98(1), pages 87-95, December.
    5. Er-Raki, S. & Rodriguez, J.C. & Garatuza-Payan, J. & Watts, C.J. & Chehbouni, A., 2013. "Determination of crop evapotranspiration of table grapes in a semi-arid region of Northwest Mexico using multi-spectral vegetation index," Agricultural Water Management, Elsevier, vol. 122(C), pages 12-19.
    6. Ding, Risheng & Kang, Shaozhong & Zhang, Yanqun & Hao, Xinmei & Tong, Ling & Du, Taisheng, 2013. "Partitioning evapotranspiration into soil evaporation and transpiration using a modified dual crop coefficient model in irrigated maize field with ground-mulching," Agricultural Water Management, Elsevier, vol. 127(C), pages 85-96.
    7. Jiang, Hou & Lu, Ning & Qin, Jun & Tang, Wenjun & Yao, Ling, 2019. "A deep learning algorithm to estimate hourly global solar radiation from geostationary satellite data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    8. Rozenstein, Offer & Haymann, Nitai & Kaplan, Gregoriy & Tanny, Josef, 2019. "Validation of the cotton crop coefficient estimation model based on Sentinel-2 imagery and eddy covariance measurements," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    9. Han, Ming & Zhang, Huihui & DeJonge, Kendall C. & Comas, Louise H. & Trout, Thomas J., 2016. "Estimating maize water stress by standard deviation of canopy temperature in thermal imagery," Agricultural Water Management, Elsevier, vol. 177(C), pages 400-409.
    10. Pereira, L.S. & Paredes, P. & Jovanovic, N., 2020. "Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach," Agricultural Water Management, Elsevier, vol. 241(C).
    11. Fan, Junliang & Zheng, Jing & Wu, Lifeng & Zhang, Fucang, 2021. "Estimation of daily maize transpiration using support vector machines, extreme gradient boosting, artificial and deep neural networks models," Agricultural Water Management, Elsevier, vol. 245(C).
    12. Agam, N. & Cohen, Y. & Berni, J.A.J. & Alchanatis, V. & Kool, D. & Dag, A. & Yermiyahu, U. & Ben-Gal, A., 2013. "An insight to the performance of crop water stress index for olive trees," Agricultural Water Management, Elsevier, vol. 118(C), pages 79-86.
    13. Narendra Gontia & Kamlesh Tiwari, 2010. "Estimation of Crop Coefficient and Evapotranspiration of Wheat (Triticum aestivum) in an Irrigation Command Using Remote Sensing and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(7), pages 1399-1414, May.
    14. Chen, Han & Huang, Jinhui Jeanne & McBean, Edward, 2020. "Partitioning of daily evapotranspiration using a modified shuttleworth-wallace model, random Forest and support vector regression, for a cabbage farmland," Agricultural Water Management, Elsevier, vol. 228(C).
    15. Pôças, I. & Calera, A. & Campos, I. & Cunha, M., 2020. "Remote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approaches," Agricultural Water Management, Elsevier, vol. 233(C).
    16. Zhang, Kefeng & Hilton, Howard W. & Greenwood, Duncan J. & Thompson, Andrew J., 2011. "A rigorous approach of determining FAO56 dual crop coefficient using soil sensor measurements and inverse modeling techniques," Agricultural Water Management, Elsevier, vol. 98(6), pages 1081-1090, April.
    17. DeJonge, K.C. & Ascough, J.C. & Andales, A.A. & Hansen, N.C. & Garcia, L.A. & Arabi, M., 2012. "Improving evapotranspiration simulations in the CERES-Maize model under limited irrigation," Agricultural Water Management, Elsevier, vol. 115(C), pages 92-103.
    18. Phogat, V. & Šimůnek, J. & Skewes, M.A. & Cox, J.W. & McCarthy, M.G., 2016. "Improving the estimation of evaporation by the FAO-56 dual crop coefficient approach under subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 178(C), pages 189-200.
    19. Jiang, Xuelian & Kang, Shaozhong & Tong, Ling & Li, Fusheng & Li, Donghao & Ding, Risheng & Qiu, Rangjian, 2014. "Crop coefficient and evapotranspiration of grain maize modified by planting density in an arid region of northwest China," Agricultural Water Management, Elsevier, vol. 142(C), pages 135-143.
    20. Kullberg, Emily G. & DeJonge, Kendall C. & Chávez, José L., 2017. "Evaluation of thermal remote sensing indices to estimate crop evapotranspiration coefficients," Agricultural Water Management, Elsevier, vol. 179(C), pages 64-73.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shao, Guomin & Han, Wenting & Zhang, Huihui & Zhang, Liyuan & Wang, Yi & Zhang, Yu, 2023. "Prediction of maize crop coefficient from UAV multisensor remote sensing using machine learning methods," Agricultural Water Management, Elsevier, vol. 276(C).
    2. Yulin Shen & Benoît Mercatoris & Zhen Cao & Paul Kwan & Leifeng Guo & Hongxun Yao & Qian Cheng, 2022. "Improving Wheat Yield Prediction Accuracy Using LSTM-RF Framework Based on UAV Thermal Infrared and Multispectral Imagery," Agriculture, MDPI, vol. 12(6), pages 1-13, June.
    3. Rozenstein, Offer & Fine, Lior & Malachy, Nitzan & Richard, Antoine & Pradalier, Cedric & Tanny, Josef, 2023. "Data-driven estimation of actual evapotranspiration to support irrigation management: Testing two novel methods based on an unoccupied aerial vehicle and an artificial neural network," Agricultural Water Management, Elsevier, vol. 283(C).
    4. Aliloo, Jamileh & Abbasi, Enayat & Karamidehkordi, Esmail & Ghanbari Parmehr, Ebadat & Canavari, Maurizio, 2024. "Dos and Don'ts of using drone technology in the crop fields," Technology in Society, Elsevier, vol. 76(C).
    5. Maria Theresia Sri Budiastuti & Djoko Purnomo & Bambang Pujiasmanto & Desy Setyaningrum, 2023. "Response of Maize Yield and Nutrient Uptake to Indigenous Organic Fertilizer from Corn Cobs," Agriculture, MDPI, vol. 13(2), pages 1-11, January.
    6. Qian Cheng & Honggang Xu & Shuaipeng Fei & Zongpeng Li & Zhen Chen, 2022. "Estimation of Maize LAI Using Ensemble Learning and UAV Multispectral Imagery under Different Water and Fertilizer Treatments," Agriculture, MDPI, vol. 12(8), pages 1-21, August.
    7. Du, Ruiqi & Xiang, Youzhen & Zhang, Fucang & Chen, Junying & Shi, Hongzhao & Liu, Hao & Yang, Xiaofei & Yang, Ning & Yang, Xizhen & Wang, Tianyang & Wu, Yuxiao, 2024. "Combing transfer learning with the OPtical TRApezoid Model (OPTRAM) to diagnosis small-scale field soil moisture from hyperspectral data," Agricultural Water Management, Elsevier, vol. 298(C).
    8. Bounajra, Afaf & Guemmat, Kamal El & Mansouri, Khalifa & Akef, Fatiha, 2024. "Towards efficient irrigation management at field scale using new technologies: A systematic literature review," Agricultural Water Management, Elsevier, vol. 295(C).
    9. Zhang, Yu & Han, Wenting & Zhang, Huihui & Niu, Xiaotao & Shao, Guomin, 2023. "Evaluating maize evapotranspiration using high-resolution UAV-based imagery and FAO-56 dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shao, Guomin & Han, Wenting & Zhang, Huihui & Zhang, Liyuan & Wang, Yi & Zhang, Yu, 2023. "Prediction of maize crop coefficient from UAV multisensor remote sensing using machine learning methods," Agricultural Water Management, Elsevier, vol. 276(C).
    2. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Mota, M. & Wang, T., 2021. "Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization," Agricultural Water Management, Elsevier, vol. 252(C).
    4. Qiu, Rangjian & Li, Longan & Liu, Chunwei & Wang, Zhenchang & Zhang, Baozhong & Liu, Zhandong, 2022. "Evapotranspiration estimation using a modified crop coefficient model in a rotated rice-winter wheat system," Agricultural Water Management, Elsevier, vol. 264(C).
    5. Ouaadi, Nadia & Jarlan, Lionel & Khabba, Saïd & Le Page, Michel & Chakir, Adnane & Er-Raki, Salah & Frison, Pierre-Louis, 2023. "Are the C-band backscattering coefficient and interferometric coherence suitable substitutes of NDVI for the monitoring of the FAO-56 crop coefficient?," Agricultural Water Management, Elsevier, vol. 282(C).
    6. Zhao, Peng & Kang, Shaozhong & Li, Sien & Ding, Risheng & Tong, Ling & Du, Taisheng, 2018. "Seasonal variations in vineyard ET partitioning and dual crop coefficients correlate with canopy development and surface soil moisture," Agricultural Water Management, Elsevier, vol. 197(C), pages 19-33.
    7. Pôças, I. & Calera, A. & Campos, I. & Cunha, M., 2020. "Remote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approaches," Agricultural Water Management, Elsevier, vol. 233(C).
    8. Zhang, Yu & Han, Wenting & Zhang, Huihui & Niu, Xiaotao & Shao, Guomin, 2023. "Evaluating maize evapotranspiration using high-resolution UAV-based imagery and FAO-56 dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 275(C).
    9. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Wang, T. & López-Urrea, R. & Cancela, J.J. & Allen, R.G., 2020. "Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data," Agricultural Water Management, Elsevier, vol. 241(C).
    10. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
    11. Mahmoud, Shereif H. & Gan, Thian Yew, 2019. "Irrigation water management in arid regions of Middle East: Assessing spatio-temporal variation of actual evapotranspiration through remote sensing techniques and meteorological data," Agricultural Water Management, Elsevier, vol. 212(C), pages 35-47.
    12. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    13. Jiang, Xuelian & Kang, Shaozhong & Tong, Ling & Li, Sien & Ding, Risheng & Du, Taisheng, 2019. "Modeling evapotranspiration and its components of maize for seed production in an arid region of northwest China using a dual crop coefficient and multisource models," Agricultural Water Management, Elsevier, vol. 222(C), pages 105-117.
    14. Miao, Qingfeng & Rosa, Ricardo D. & Shi, Haibin & Paredes, Paula & Zhu, Li & Dai, Jiaxin & Gonçalves, José M. & Pereira, Luis S., 2016. "Modeling water use, transpiration and soil evaporation of spring wheat–maize and spring wheat–sunflower relay intercropping using the dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 165(C), pages 211-229.
    15. Ran, Hui & Kang, Shaozhong & Li, Fusheng & Tong, Ling & Ding, Risheng & Du, Taisheng & Li, Sien & Zhang, Xiaotao, 2017. "Performance of AquaCrop and SIMDualKc models in evapotranspiration partitioning on full and deficit irrigated maize for seed production under plastic film-mulch in an arid region of China," Agricultural Systems, Elsevier, vol. 151(C), pages 20-32.
    16. De Caro, Dario & Ippolito, Matteo & Cannarozzo, Marcella & Provenzano, Giuseppe & Ciraolo, Giuseppe, 2023. "Assessing the performance of the Gaussian Process Regression algorithm to fill gaps in the time-series of daily actual evapotranspiration of different crops in temperate and continental zones using gr," Agricultural Water Management, Elsevier, vol. 290(C).
    17. Jin, Xiuliang & Yang, Guijun & Xue, Xuzhang & Xu, Xingang & Li, Zhenhai & Feng, Haikuan, 2017. "Validation of two Huanjing-1A/B satellite-based FAO-56 models for estimating winter wheat crop evapotranspiration during mid-season," Agricultural Water Management, Elsevier, vol. 189(C), pages 27-38.
    18. Pereira, L.S. & Paredes, P. & López-Urrea, R. & Hunsaker, D.J. & Mota, M. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for vegetable crops, an update of FAO56 crop water requirements approach," Agricultural Water Management, Elsevier, vol. 243(C).
    19. Rallo, G. & Paço, T.A. & Paredes, P. & Puig-Sirera, À. & Massai, R. & Provenzano, G. & Pereira, L.S., 2021. "Updated single and dual crop coefficients for tree and vine fruit crops," Agricultural Water Management, Elsevier, vol. 250(C).
    20. Pereira, L.S. & Paredes, P. & Jovanovic, N., 2020. "Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach," Agricultural Water Management, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:252:y:2021:i:c:s0378377421001712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.