IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v348y2023ics0306261923009170.html
   My bibliography  Save this article

High-resolution analysis of rooftop photovoltaic potential based on hourly generation simulations and load profiles

Author

Listed:
  • Jiang, Hou
  • Zhang, Xiaotong
  • Yao, Ling
  • Lu, Ning
  • Qin, Jun
  • Liu, Tang
  • Zhou, Chenghu

Abstract

Rooftop photovoltaics (PV) are playing an increasingly important role in building a clean and decarbonized energy system. For such distributed resources, formulating scientific development plans and incentives tailored to local conditions requires a comprehensive potential assessment at high spatial and temporal resolutions. Here, we evaluate the resource volume, power generation potential, economic feasibility, and market returns on electricity sales of rooftop PV in Jiangsu Province, China at hourly and 500-m resolutions by combining remote sensing survey, PV output simulation and load dispatching. The province's annual rooftop PV generation meets approximately 30% of the total social electricity consumption, and the entire region has reached both plant-side and user-side grid parity. Based on the case study, we investigate the suitable development scale of rooftop PV subject to different owners, as well as the impact of grid's system flexibility and energy storage on rooftop PV curtailment. For household use, the installation of a 3-kW rooftop PV is suitable, while for grid power supply, rooftop PV development needs to be sized to accommodate the grid. We find that increasing system flexibility significantly reduces PV curtailment for the same penetration rate, and that the use of energy storage helps increasing PV penetration under the curtailment constraint. This study represents a relatively extreme case of high penetration of variable solar PV generations, high uncertainty of PV outputs, and high variability in user-side loads, providing a reliable reference for rooftop PV development in other China's provinces.

Suggested Citation

  • Jiang, Hou & Zhang, Xiaotong & Yao, Ling & Lu, Ning & Qin, Jun & Liu, Tang & Zhou, Chenghu, 2023. "High-resolution analysis of rooftop photovoltaic potential based on hourly generation simulations and load profiles," Applied Energy, Elsevier, vol. 348(C).
  • Handle: RePEc:eee:appene:v:348:y:2023:i:c:s0306261923009170
    DOI: 10.1016/j.apenergy.2023.121553
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923009170
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121553?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Göransson, Lisa & Johnsson, Filip, 2009. "Dispatch modeling of a regional power generation system – Integrating wind power," Renewable Energy, Elsevier, vol. 34(4), pages 1040-1049.
    2. Jiang, Hou & Lu, Ning & Qin, Jun & Tang, Wenjun & Yao, Ling, 2019. "A deep learning algorithm to estimate hourly global solar radiation from geostationary satellite data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    3. Bódis, Katalin & Kougias, Ioannis & Jäger-Waldau, Arnulf & Taylor, Nigel & Szabó, Sándor, 2019. "A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    4. Sun, Tao & Shan, Ming & Rong, Xing & Yang, Xudong, 2022. "Estimating the spatial distribution of solar photovoltaic power generation potential on different types of rural rooftops using a deep learning network applied to satellite images," Applied Energy, Elsevier, vol. 315(C).
    5. Millot, Ariane & Krook-Riekkola, Anna & Maïzi, Nadia, 2020. "Guiding the future energy transition to net-zero emissions: Lessons from exploring the differences between France and Sweden," Energy Policy, Elsevier, vol. 139(C).
    6. Zhong, Teng & Zhang, Zhixin & Chen, Min & Zhang, Kai & Zhou, Zixuan & Zhu, Rui & Wang, Yijie & Lü, Guonian & Yan, Jinyue, 2021. "A city-scale estimation of rooftop solar photovoltaic potential based on deep learning," Applied Energy, Elsevier, vol. 298(C).
    7. Knuepfer, K. & Rogalski, N. & Knuepfer, A. & Esteban, M. & Shibayama, T., 2022. "A reliable energy system for Japan with merit order dispatch, high variable renewable share and no nuclear power," Applied Energy, Elsevier, vol. 328(C).
    8. Talavera, D.L. & Pérez-Higueras, P. & Almonacid, F. & Fernández, E.F., 2017. "A worldwide assessment of economic feasibility of HCPV power plants: Profitability and competitiveness," Energy, Elsevier, vol. 119(C), pages 408-424.
    9. Huang, Zhaojian & Mendis, Thushini & Xu, Shen, 2019. "Urban solar utilization potential mapping via deep learning technology: A case study of Wuhan, China," Applied Energy, Elsevier, vol. 250(C), pages 283-291.
    10. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    11. Zhang, Xian & Wang, Jia-Xing & Cao, Zhe & Shen, Shuo & Meng, Shuo & Fan, Jing-Li, 2021. "What is driving the remarkable decline of wind and solar power curtailment in China? Evidence from China and four typical provinces," Renewable Energy, Elsevier, vol. 174(C), pages 31-42.
    12. Jun Yin & Annalisa Molini & Amilcare Porporato, 2020. "Impacts of solar intermittency on future photovoltaic reliability," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    13. Zambrano-Asanza, S. & Quiros-Tortos, J. & Franco, John F., 2021. "Optimal site selection for photovoltaic power plants using a GIS-based multi-criteria decision making and spatial overlay with electric load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    14. Yasuda, Yoh & Bird, Lori & Carlini, Enrico Maria & Eriksen, Peter Børre & Estanqueiro, Ana & Flynn, Damian & Fraile, Daniel & Gómez Lázaro, Emilio & Martín-Martínez, Sergio & Hayashi, Daisuke & Holtti, 2022. "C-E (curtailment – Energy share) map: An objective and quantitative measure to evaluate wind and solar curtailment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    15. Siddharth Joshi & Shivika Mittal & Paul Holloway & Priyadarshi Ramprasad Shukla & Brian Ó Gallachóir & James Glynn, 2021. "High resolution global spatiotemporal assessment of rooftop solar photovoltaics potential for renewable electricity generation," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    16. Chyong, Chi Kong & Newbery, David, 2022. "A unit commitment and economic dispatch model of the GB electricity market – Formulation and application to hydro pumped storage," Energy Policy, Elsevier, vol. 170(C).
    17. Klein, Martin & Ziade, Ahmad & de Vries, Laurens, 2019. "Aligning prosumers with the electricity wholesale market – The impact of time-varying price signals and fixed network charges on solar self-consumption," Energy Policy, Elsevier, vol. 134(C).
    18. Lopez-Ruiz, Hector G. & Blazquez, Jorge & Vittorio, Michele, 2020. "Assessing residential solar rooftop potential in Saudi Arabia using nighttime satellite images: A study for the city of Riyadh," Energy Policy, Elsevier, vol. 140(C).
    19. Shokrzadeh, Shahab & Jafari Jozani, Mohammad & Bibeau, Eric & Molinski, Tom, 2015. "A statistical algorithm for predicting the energy storage capacity for baseload wind power generation in the future electric grids," Energy, Elsevier, vol. 89(C), pages 793-802.
    20. Sánchez de la Nieta, Agustín A. & Paterakis, Nikolaos G. & Gibescu, Madeleine, 2020. "Participation of photovoltaic power producers in short-term electricity markets based on rescheduling and risk-hedging mapping," Applied Energy, Elsevier, vol. 266(C).
    21. Fan, Jing-Li & Wang, Jia-Xing & Hu, Jia-Wei & Wang, Yu & Zhang, Xian, 2019. "Optimization of China’s provincial renewable energy installation plan for the 13th five-year plan based on renewable portfolio standards," Applied Energy, Elsevier, vol. 254(C).
    22. Tian, Jinfang & Yu, Longguang & Xue, Rui & Zhuang, Shan & Shan, Yuli, 2022. "Global low-carbon energy transition in the post-COVID-19 era," Applied Energy, Elsevier, vol. 307(C).
    23. Lukač, Niko & Špelič, Denis & Štumberger, Gorazd & Žalik, Borut, 2020. "Optimisation for large-scale photovoltaic arrays’ placement based on Light Detection And Ranging data," Applied Energy, Elsevier, vol. 263(C).
    24. Bravo, Ruben & Ortiz, Carlos & Chacartegui, Ricardo & Friedrich, Daniel, 2021. "Multi-objective optimisation and guidelines for the design of dispatchable hybrid solar power plants with thermochemical energy storage," Applied Energy, Elsevier, vol. 282(PB).
    25. Debra J. Davidson, 2019. "Exnovating for a renewable energy transition," Nature Energy, Nature, vol. 4(4), pages 254-256, April.
    26. Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
    27. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
    28. Henckes, Philipp & Knaut, Andreas & Obermüller, Frank & Frank, Christopher, 2018. "The benefit of long-term high resolution wind data for electricity system analysis," Energy, Elsevier, vol. 143(C), pages 934-942.
    29. Zhong, Qing & Nelson, Jake R. & Tong, Daoqin & Grubesic, Tony H., 2022. "A spatial optimization approach to increase the accuracy of rooftop solar energy assessments," Applied Energy, Elsevier, vol. 316(C).
    30. Sarah Feron & Raúl R. Cordero & Alessandro Damiani & Robert B. Jackson, 2021. "Climate change extremes and photovoltaic power output," Nature Sustainability, Nature, vol. 4(3), pages 270-276, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Rui & Lau, Wing Sze & You, Linlin & Yan, Jinyue & Ratti, Carlo & Chen, Min & Wong, Man Sing & Qin, Zheng, 2024. "Multi-sourced data modelling of spatially heterogenous life-cycle carbon mitigation from installed rooftop photovoltaics: A case study in Singapore," Applied Energy, Elsevier, vol. 362(C).
    2. Jiang, Hou & Yao, Ling & Lu, Ning & Qin, Jun & Zhang, Xiaotong & Liu, Tang & Zhang, Xingxing & Zhou, Chenghu, 2024. "Exploring the optimization of rooftop photovoltaic scale and spatial layout under curtailment constraints," Energy, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou Jiang & Ning Lu & Xuecheng Wang, 2023. "Assessing Carbon Reduction Potential of Rooftop PV in China through Remote Sensing Data-Driven Simulations," Sustainability, MDPI, vol. 15(4), pages 1-16, February.
    2. Jiang, Hou & Yao, Ling & Lu, Ning & Qin, Jun & Zhang, Xiaotong & Liu, Tang & Zhang, Xingxing & Zhou, Chenghu, 2024. "Exploring the optimization of rooftop photovoltaic scale and spatial layout under curtailment constraints," Energy, Elsevier, vol. 293(C).
    3. Özdemir, Samed & Yavuzdoğan, Ahmet & Bilgilioğlu, Burhan Baha & Akbulut, Zeynep, 2023. "SPAN: An open-source plugin for photovoltaic potential estimation of individual roof segments using point cloud data," Renewable Energy, Elsevier, vol. 216(C).
    4. Jiang, Hou & Lu, Ning & Yao, Ling & Qin, Jun & Liu, Tang, 2023. "Impact of climate changes on the stability of solar energy: Evidence from observations and reanalysis," Renewable Energy, Elsevier, vol. 208(C), pages 726-736.
    5. Mao, Hongzhi & Chen, Xie & Luo, Yongqiang & Deng, Jie & Tian, Zhiyong & Yu, Jinghua & Xiao, Yimin & Fan, Jianhua, 2023. "Advances and prospects on estimating solar photovoltaic installation capacity and potential based on satellite and aerial images," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    6. Molnár, Gergely & Cabeza, Luisa F. & Chatterjee, Souran & Ürge-Vorsatz, Diana, 2024. "Modelling the building-related photovoltaic power production potential in the light of the EU's Solar Rooftop Initiative," Applied Energy, Elsevier, vol. 360(C).
    7. Ren, Haoshan & Xu, Chengliang & Ma, Zhenjun & Sun, Yongjun, 2022. "A novel 3D-geographic information system and deep learning integrated approach for high-accuracy building rooftop solar energy potential characterization of high-density cities," Applied Energy, Elsevier, vol. 306(PA).
    8. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
    9. Žalik, Mitja & Mongus, Domen & Lukač, Niko, 2024. "High-resolution spatiotemporal assessment of solar potential from remote sensing data using deep learning," Renewable Energy, Elsevier, vol. 222(C).
    10. Elham Fakhraian & Marc Alier & Francesc Valls Dalmau & Alireza Nameni & Maria José Casañ Guerrero, 2021. "The Urban Rooftop Photovoltaic Potential Determination," Sustainability, MDPI, vol. 13(13), pages 1-18, July.
    11. Alharbi, Abdulaziz & Awwad, Zeyad & Habib, Abdulelah & de Weck, Olivier, 2023. "Economical sizing and multi-azimuth layout optimization of grid-connected rooftop photovoltaic systems using Mixed-Integer Programming," Applied Energy, Elsevier, vol. 335(C).
    12. Lukač, Niko & Mongus, Domen & Žalik, Borut & Štumberger, Gorazd & Bizjak, Marko, 2024. "Novel GPU-accelerated high-resolution solar potential estimation in urban areas by using a modified diffuse irradiance model," Applied Energy, Elsevier, vol. 353(PA).
    13. Aslani, Mohammad & Seipel, Stefan, 2022. "Automatic identification of utilizable rooftop areas in digital surface models for photovoltaics potential assessment," Applied Energy, Elsevier, vol. 306(PA).
    14. Liu, Jiang & Wu, Qifeng & Lin, Zhipeng & Shi, Huijie & Wen, Shaoyang & Wu, Qiaoyu & Zhang, Junxue & Peng, Changhai, 2023. "A novel approach for assessing rooftop-and-facade solar photovoltaic potential in rural areas using three-dimensional (3D) building models constructed with GIS," Energy, Elsevier, vol. 282(C).
    15. Sun, Tao & Shan, Ming & Rong, Xing & Yang, Xudong, 2022. "Estimating the spatial distribution of solar photovoltaic power generation potential on different types of rural rooftops using a deep learning network applied to satellite images," Applied Energy, Elsevier, vol. 315(C).
    16. Chen, Qi & Li, Xinyuan & Zhang, Zhengjia & Zhou, Chao & Guo, Zhiling & Liu, Zhengguang & Zhang, Haoran, 2023. "Remote sensing of photovoltaic scenarios: Techniques, applications and future directions," Applied Energy, Elsevier, vol. 333(C).
    17. Babak Ranjgar & Alessandro Niccolai, 2023. "Large-Scale Rooftop Solar Photovoltaic Power Production Potential Assessment: A Case Study for Tehran Metropolitan Area, Iran," Energies, MDPI, vol. 16(20), pages 1-14, October.
    18. Ding, Feng & Yang, Jianping & Zhou, Zan, 2023. "Economic profits and carbon reduction potential of photovoltaic power generation for China's high-speed railway infrastructure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    19. Chen, Xie & Zhou, Chaohui & Tian, Zhiyong & Mao, Hongzhi & Luo, Yongqiang & Sun, Deyu & Fan, Jianhua & Jiang, Liguang & Deng, Jie & Rosen, Marc A., 2023. "Different photovoltaic power potential variations in East and West China," Applied Energy, Elsevier, vol. 351(C).
    20. Kapsalis, Vasileios & Maduta, Carmen & Skandalos, Nikolaos & Wang, Meng & Bhuvad, Sushant Suresh & D'Agostino, Delia & Ma, Tao & Raj, Uday & Parker, Danny & Peng, Jinqing & Karamanis, Dimitris, 2024. "Critical assessment of large-scale rooftop photovoltaics deployment in the global urban environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:348:y:2023:i:c:s0306261923009170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.