IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v68y2014icp163-170.html
   My bibliography  Save this article

Interfacing harmonic electromagnetic models of grounding systems with the EMTP-ATP software package

Author

Listed:
  • Sarajcev, Petar
  • Vujevic, Slavko
  • Lovric, Dino

Abstract

This paper proposes a methodology for interfacing the frequency-domain harmonic electromagnetic models of complex grounding systems (buried in horizontally stratified multilayer medium) with the EMTP-ATP software package, for the purpose of transient analysis of electrical power systems. It comprises three individual steps: (1) construction of the frequency-dependent nodal admittance matrix for the arbitrarily positioned system of conductors in horizontally stratified multilayer medium, (2) application of the vector fitting technique to this frequency-dependent nodal admittance matrix and (3) construction of the Foster-type networks from the results of the vector fitting and their interfacing with the EMTP-ATP environment. The proposed methodology is general and could be applied to different kinds of grounding systems, ranging from wind turbine grounding systems, to groundings of high voltage transmission line towers and towers carrying GSM base stations.

Suggested Citation

  • Sarajcev, Petar & Vujevic, Slavko & Lovric, Dino, 2014. "Interfacing harmonic electromagnetic models of grounding systems with the EMTP-ATP software package," Renewable Energy, Elsevier, vol. 68(C), pages 163-170.
  • Handle: RePEc:eee:renene:v:68:y:2014:i:c:p:163-170
    DOI: 10.1016/j.renene.2014.02.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114000974
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.02.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rodrigues, R.B. & Mendes, V.M.F. & Catalão, J.P.S., 2011. "Protection of wind energy systems against the indirect effects of lightning," Renewable Energy, Elsevier, vol. 36(11), pages 2888-2896.
    2. Cavka, Damir & Poljak, Dragan & Doric, Vicko & Goic, Ranko, 2012. "Transient analysis of grounding systems for wind turbines," Renewable Energy, Elsevier, vol. 43(C), pages 284-291.
    3. Petar Sarajčev & Ranko Goić, 2011. "A Review of Current Issues in State-of-Art of Wind Farm Overvoltage Protection," Energies, MDPI, vol. 4(4), pages 1-25, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sarajcev, P. & Vasilj, J. & Jakus, D., 2016. "Monte–Carlo analysis of wind farm lightning-surge transients aided by LINET lightning-detection network data," Renewable Energy, Elsevier, vol. 99(C), pages 501-513.
    2. Malcolm, Newman & Aggarwal, Raj K., 2015. "The impact of multiple lightning strokes on the energy absorbed by MOV surge arresters in wind farms during direct lightning strikes," Renewable Energy, Elsevier, vol. 83(C), pages 1305-1314.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarajcev, Petar & Vasilj, Josip & Goic, Ranko, 2013. "Monte Carlo analysis of wind farm surge arresters risk of failure due to lightning surges," Renewable Energy, Elsevier, vol. 57(C), pages 626-634.
    2. Jiang, Jheng-Lun & Chang, Hong-Chan & Kuo, Cheng-Chien & Huang, Cheng-Kai, 2013. "Transient overvoltage phenomena on the control system of wind turbines due to lightning strike," Renewable Energy, Elsevier, vol. 57(C), pages 181-189.
    3. Rodrigues, R.B. & Mendes, V.M.F. & Catalão, J.P.S., 2012. "Protection of interconnected wind turbines against lightning effects: Overvoltages and electromagnetic transients study," Renewable Energy, Elsevier, vol. 46(C), pages 232-240.
    4. Malcolm, Newman & Aggarwal, Raj K., 2015. "The impact of multiple lightning strokes on the energy absorbed by MOV surge arresters in wind farms during direct lightning strikes," Renewable Energy, Elsevier, vol. 83(C), pages 1305-1314.
    5. Sarajcev, P. & Vasilj, J. & Jakus, D., 2016. "Monte–Carlo analysis of wind farm lightning-surge transients aided by LINET lightning-detection network data," Renewable Energy, Elsevier, vol. 99(C), pages 501-513.
    6. Talaat, M. & Farahat, M.A. & Osman, M., 2016. "Assessment of earthing system location for wind turbines using finite element method," Renewable Energy, Elsevier, vol. 93(C), pages 412-423.
    7. Hosseini, S.M Amin & Mohammadirad, Amir & Shayegani Akmal, Amir Abbas, 2022. "Surge analysis on wind farm considering lightning strike to multi-blade," Renewable Energy, Elsevier, vol. 186(C), pages 312-326.
    8. Nurul A. A. Latiff & Hazlee A. Illias & Ab H. A. Bakar & Sameh Z. A. Dabbak, 2018. "Measurement and Modelling of Leakage Current Behaviour in ZnO Surge Arresters under Various Applied Voltage Amplitudes and Pollution Conditions," Energies, MDPI, vol. 11(4), pages 1-16, April.
    9. Erika Stracqualursi & Rodolfo Araneo & Giampiero Lovat & Amedeo Andreotti & Paolo Burghignoli & Jose Brandão Faria & Salvatore Celozzi, 2020. "Analysis of Metal Oxide Varistor Arresters for Protection of Multiconductor Transmission Lines Using Unconditionally-Stable Crank–Nicolson FDTD," Energies, MDPI, vol. 13(8), pages 1-19, April.
    10. Radičević, Branko M. & Savić, Milan S. & Madsen, Søren Find & Badea, Ion, 2012. "Impact of wind turbine blade rotation on the lightning strike incidence – A theoretical and experimental study using a reduced-size model," Energy, Elsevier, vol. 45(1), pages 644-654.
    11. Dimitris Al. Katsaprakakis & Nikos Papadakis & Ioannis Ntintakis, 2021. "A Comprehensive Analysis of Wind Turbine Blade Damage," Energies, MDPI, vol. 14(18), pages 1-31, September.
    12. Yeh, Tsu-Ming & Huang, Yu-Lang, 2014. "Factors in determining wind farm location: Integrating GQM, fuzzy DEMATEL, and ANP," Renewable Energy, Elsevier, vol. 66(C), pages 159-169.
    13. Rafael B. Rodrigues & Victor M. F. Mendes & João P. S. Catalão, 2012. "Analysis of Transient Phenomena Due to a Direct Lightning Strike on a Wind Energy System," Energies, MDPI, vol. 5(7), pages 1-14, July.
    14. S. Pryor & R. Barthelmie, 2013. "Assessing the vulnerability of wind energy to climate change and extreme events," Climatic Change, Springer, vol. 121(1), pages 79-91, November.
    15. Federico Succetti & Antonello Rosato & Rodolfo Araneo & Gianfranco Di Lorenzo & Massimo Panella, 2023. "Challenges and Perspectives of Smart Grid Systems in Islands: A Real Case Study," Energies, MDPI, vol. 16(2), pages 1-37, January.
    16. Shariatinasab, Reza & Kermani, Behzad & Gholinezhad, Javad, 2019. "Transient modeling of the wind farms in order to analysis the lightning related overvoltages," Renewable Energy, Elsevier, vol. 132(C), pages 1151-1166.
    17. Punda, Luka & Capuder, Tomislav & Pandžić, Hrvoje & Delimar, Marko, 2017. "Integration of renewable energy sources in southeast Europe: A review of incentive mechanisms and feasibility of investments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 77-88.
    18. Bingtuan Gao & Wei Wei & Luoma Zhang & Ning Chen & Yingjun Wu & Yi Tang, 2014. "Differential Protection for an Outgoing Transformer of Large-Scale Doubly Fed Induction Generator-Based Wind Farms," Energies, MDPI, vol. 7(9), pages 1-20, August.
    19. Jiangyan Yan & Guozheng Wang & Qingmin Li & Li Zhang & Joseph D. Yan & Chun Chen & Zhiyang Fang, 2017. "A Comparative Study on Damage Mechanism of Sandwich Structures with Different Core Materials under Lightning Strikes," Energies, MDPI, vol. 10(10), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:68:y:2014:i:c:p:163-170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.