IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v93y2016icp412-423.html
   My bibliography  Save this article

Assessment of earthing system location for wind turbines using finite element method

Author

Listed:
  • Talaat, M.
  • Farahat, M.A.
  • Osman, M.

Abstract

A new proposal for the assessment of earthing system location used for wind turbines is presented. This proposal depends on the simulation of the electric field as well as the calculation of current density at the ground surface above the earthing system and distribution inside the soil when the wind turbine is exposed to high voltage. The electrical potential simulation around the earthing system of wind turbine using ring earth electrode with and without auxiliary vertical rods was also studied. Accurate calculations and simulation of the electric field are prerequisite for the simulation of current density. The electric field distribution is obtained by calculating the electric potential in three-dimensional domain surrounding the earthing system using Finite Element Method. The boundary conditions satisfy both Dirichlet's and Neumann's equations. The simulated electrodes are energized with one per unit voltage to be available for different types of applied potential. The resistance of the earthing system is calculated. This simulation model shows reasonably close agreement which gives confidence in predicting the assessment of the earthing grid location which is around 66.6% out of the total depth length of the affected domain. Different types of soils were checked to satisfy this ratio of the location assessment. The results showed that the vertical component of electrical field intensity and current density were improved at the assessment location of the earthing grid.

Suggested Citation

  • Talaat, M. & Farahat, M.A. & Osman, M., 2016. "Assessment of earthing system location for wind turbines using finite element method," Renewable Energy, Elsevier, vol. 93(C), pages 412-423.
  • Handle: RePEc:eee:renene:v:93:y:2016:i:c:p:412-423
    DOI: 10.1016/j.renene.2016.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116301859
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cavka, Damir & Poljak, Dragan & Doric, Vicko & Goic, Ranko, 2012. "Transient analysis of grounding systems for wind turbines," Renewable Energy, Elsevier, vol. 43(C), pages 284-291.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Talaat, M. & Farahat, M.A. & Elkholy, M.H., 2019. "Renewable power integration: Experimental and simulation study to investigate the ability of integrating wave, solar and wind energies," Energy, Elsevier, vol. 170(C), pages 668-682.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Jheng-Lun & Chang, Hong-Chan & Kuo, Cheng-Chien & Huang, Cheng-Kai, 2013. "Transient overvoltage phenomena on the control system of wind turbines due to lightning strike," Renewable Energy, Elsevier, vol. 57(C), pages 181-189.
    2. Hosseini, S.M Amin & Mohammadirad, Amir & Shayegani Akmal, Amir Abbas, 2022. "Surge analysis on wind farm considering lightning strike to multi-blade," Renewable Energy, Elsevier, vol. 186(C), pages 312-326.
    3. Rodrigues, R.B. & Mendes, V.M.F. & Catalão, J.P.S., 2012. "Protection of interconnected wind turbines against lightning effects: Overvoltages and electromagnetic transients study," Renewable Energy, Elsevier, vol. 46(C), pages 232-240.
    4. Malcolm, Newman & Aggarwal, Raj K., 2015. "The impact of multiple lightning strokes on the energy absorbed by MOV surge arresters in wind farms during direct lightning strikes," Renewable Energy, Elsevier, vol. 83(C), pages 1305-1314.
    5. Sarajcev, Petar & Vasilj, Josip & Goic, Ranko, 2013. "Monte Carlo analysis of wind farm surge arresters risk of failure due to lightning surges," Renewable Energy, Elsevier, vol. 57(C), pages 626-634.
    6. Shariatinasab, Reza & Kermani, Behzad & Gholinezhad, Javad, 2019. "Transient modeling of the wind farms in order to analysis the lightning related overvoltages," Renewable Energy, Elsevier, vol. 132(C), pages 1151-1166.
    7. Punda, Luka & Capuder, Tomislav & Pandžić, Hrvoje & Delimar, Marko, 2017. "Integration of renewable energy sources in southeast Europe: A review of incentive mechanisms and feasibility of investments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 77-88.
    8. Sarajcev, Petar & Vujevic, Slavko & Lovric, Dino, 2014. "Interfacing harmonic electromagnetic models of grounding systems with the EMTP-ATP software package," Renewable Energy, Elsevier, vol. 68(C), pages 163-170.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:93:y:2016:i:c:p:412-423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.